
FULL STACK DEVELOPMENT

[R22A0513]

 LECTURE NOTES

B. TECH III YEAR – I SEMESTER (R22)

 (2025-26)

DEPARTMENT OF COMPTER SCIENCE & ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC –

‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100,

Telangana State, India

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF COMPTER SCIENCE & ENGINEERING

INDEX

SNO UNIT TOPIC PAGE

NO

1 I Understanding the Basic Web Development Framework- 5

2 I HTML Basics 9

3 I Cascading Style Sheets 38

4 I Version Control 47

5 II
 JavaScript basics, Functions, form validation

62

6 II
 OOPS Aspects of JavaScript

93

7 II JQuery Framework, jQuery events 106

8 II AJAX for data exchange with server, JSON data format 114

9 III
 Angular: importance of Angular, Understanding Angular

120

10 III creating a Basic Angular Application, Angular Components,
Expressions

124

11 III Data Binding, Built-in Directives, Custom Directives 127

12 III Implementing AngularServices in Web Applications 145

13 III Need of React, Simple React Structure, The Virtual DOM,
React Components

162

14 III Introducing React Components, Creating Components in
React, Data and Data Flow in React

175

15 III
 Rendering and Life Cycle Methods in React, Working with

forms in React

192

16 III
integrating third party libraries, Routing in React

207

17 IV Node js: Getting Started with Node.js, Using Events, Listeners,
Timers

214

18 IV Callbacks in Node.js, Handling Data I/O in Node.js 225

19 IV
 Accessing the File System from Node.js

235

20 V Understanding NoSQL and MongoDB, Getting Started with

MongoDB

248

21 V Getting Started with MongoDB and Node.js 250

22 V Accessing MongoDB from Node.js 318

23 V Using Mongoose for Structured Schema and Validation 323

24 V Advanced MongoDB Concepts 325

B. TECH: INFORMATION TECHNOLOGY COURSESTRUCTURE

M MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

 III Year B.Tech. C.S.E- I Sem L/T/P/C

 3/0/0/3

(R22A0513) Full Stack Development

COURSE OBJECTIVES:

1. To become knowledgeable about the most recent web development technologies.

2. Idea for creating two tier and three tier architectural web applications.

3. Students will become familiar to implement fast, efficient, interactive and scalable web

applications using run time environment provided by the full stack components

4. Design and Analyze real time web applications and Constructing suitable client and server

side applications.

5. To learn core concept of both front end and back end programming.

 UNIT - I

Web Development Basics: Understanding the Basic Web Development Framework- User,

Browser, Webserver, Backend Services, HTML Basics: Headings, Paragraphs, Links, Images,

Lists, Tables, Div Element, Forms, Cascading Style Sheets: Syntax, Types, Selectors,

Background, Border, Font, Text, Table, box model, Version Control: Getting Started with Git,

Git Basics, Git Branching and Merging, working with remote repositories.

 UNIT - II

JavaScript and jQuery: JavaScript basics, Functions, form validation, OOPS Aspects of

JavaScript, JQuery Framework, jQuery events, AJAX for data exchange with server, JSON data

format.

 UNIT - III

Angular: importance of Angular, Understanding Angular, creating a Basic Angular

Application, Angular Components, Expressions, Data Binding, Built-in Directives, Custom

Directives, Implementing AngularServices in Web Applications.

React:

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing

React Components, Creating Components in React, Data and Data Flow in React, Rendering

and Life Cycle Methods in React, Working with forms in React, integrating third party

libraries, Routing in React.

UNIT – IV

Node js: Getting Started with Node.js, Using Events, Listeners, Timers, and Callbacks in Node.js,

Handling Data I/O in Node.js, Accessing the File System from Node.js, Implementing Socket Services

in Node.js.

 UNIT – V

MongoDB:

Understanding NoSQL and MongoDB, Getting Started with MongoDB, Getting Started with

MongoDB and Node.js, Manipulating MongoDB Documents from Node.js, Accessing MongoDB

from Node.js, Using Mongoose for Structured Schema and Validation, Advanced MongoDB

Concepts.

TEXT BOOKS:

1. Web Design with HTML, CSS, JavaScript and JQuery Set Book by Jon Duckett

Professional JavaScript for Web Developers Book by Nicholas C. Zakas. (Unit-I, II).

2. ProGit, 2nd Edition, Apress publication by Scott Chacon and Straub. (Unit I).

3. Mark Tielens Thomas, React in Action, 1st Edition, Manning Publications. (Unit-III).

B. TECH: INFORMATION TECHNOLOGY COURSESTRUCTURE

4. Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web

Development, 2nd Edition, Addison-Wesley, 2019. (Unit-III, Unit-IV, Unit-V).

REFERENCE BOOKS:

1. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with

Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.

2. Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday

Skills Expected of a Modern Full Stack Web Developer’, 1st edition, Apress, 2018.

3. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications

Using React and Redux, 2nd edition, Addison-Wesley Professional, 2018.

COURSEOUTCOMES:

1. Understand Full stack components for developing web application.

2. Students are able to develop a dynamic webpage by the use of java script and jQuery.

3. Design faster and effective single page applications using Angular and Create interactive

user interfaces with react components

4. Apply packages of NodeJS to work with Data, Files, Http Requests and Responses.

5. Use MongoDB data base for storing and processing huge data and connects with NodeJS

application.

3

 UNIT – I

Web Development Basics: Understanding the Basic Web Development Framework- User, Browser,

Webserver, Backend Services, HTML Basics: Headings, Paragraphs, Links, Images, Lists, Tables, Div

Element, Forms, Cascading Style Sheets: Syntax, Types, Selectors, Background, Border, Font, Text,

Table, box model, Version Control: Getting Started with Git, Git Basics, Git Branching and Merging,

working with remote repositories.

Web Development Basics:

Understanding the Basic Web Development Framework:

➢ This topic focuses on the fundamental components of the web development framework and then

describes the components of the Node.js-to-Angular stack and discusses various aspects of the

general website/web application development framework from users to backend services.

➢ The main components of any given web framework are the user, browser, webserver,

and backend services.

➢ In the following figure, components are described in a top-down manner from user down to

backend services.

Figure 1.1 Diagram showing the components of a basic website/web application.

User:

Users are a fundamental part of all websites; User expectations define the requirements for developing

a good website, and these expectations have changed a lot over the years.

➢ The user role in a web framework is to sit on the visual output and interaction input of

webpages. That is, users view the results of the web framework processing and then provide

interactions using mouse clicks, keyboard input, and swipes and taps on mobile devices.

Browser

The browser plays three roles in the web framework.

4

➢ First, it provides communication to and from the webserver.

➢ Second, it interprets the data from the server and renders it into the view that the user actually

sees.

➢ Finally, the browser handles user interaction through the keyboard, mouse, touchscreen, or other

input device and takes the appropriate action.

✓ Browser to Webserver Communication

➢ Browser-to-webserver communication consists of a series of requests using the

HTTP and HTTPS protocols.

➢ Hypertext Transfer Protocol (HTTP) defines communication between the browser and the

webserver.

➢ HTTP defines what types of requests can be made as well as the format of those requests and the

HTTP response.

➢ HTTPS adds an additional security layer, SSL/TLS, to ensure secure connections by requiring the

webserver to provide a certificate to the browser. The user then can determine whether to accept

the certificate before allowing the connection.

The browser makes three main types of requests to the server:

GET: The GET request is typically used to retrieve data from the server, such as .html

files, images, or JSON data.

POST: POST requests are used when sending data to the server, such as adding an item to

a shopping cart or submitting a web form.

AJAX: Asynchronous JavaScript and XML (AJAX) is actually just a GET or POST

request done directly by JavaScript running in the browser. Despite the name, an AJAX

request can receive XML, JSON, or raw data in the response.

✓ Rendering the Browser View

The screen that the user actually views and interacts with is often made up of several

different pieces of data retrieved from the webserver.

The browser reads data from the initial URL and then renders the HTML document to

build a Document Object Model (DOM).

The DOM is a tree structure object with the HTML document as the root. The structure of

the tree basically matches the structure of the HTML document.

 For example, the document will have html as a child, and html will have head and body

as children, and body may have div, p, or other elements as children, like this:

document

+ html

+ head

+ body

+ div

+ p.

The browser interprets each DOM element and renders it to the user’s screen to build the webpage view.

The browser often ends up getting various types of data from multiple webserver requests to build the

webpage.

The final view of the web page/web page behaviour is contains following content.

5

• HTML files: These provide the fundamental structure of the DOM.

• CSS files: These define how each of the elements on the page is to be styled;

 for example, font, colour, borders, and spacing.

• Client-side scripts: These are typically JavaScript files. They can provide added functionality to

the webpage, manipulate the DOM to change the look of the webpage, and provide any necessary

logic required to display the page and provide functionality.

• Media files: Image, video, and sound files are rendered as part of the webpage.

• Data: Any data, such as XML, JSON, or raw text, can be provided by the webserver as a response

to an AJAX request. Rather than sending a request back to the server to rebuild the webpage, new

data can be retrieved via AJAX and inserted into the webpage via JavaScript.

• HTTP headers: The HTTP protocol defines a set of headers that can be used by the browser and

client-side scripts to define the behaviour of the webpage.

For example, cookies are contained in the HTTP headers. The HTTP headers also define

the type of data in the request as well as the type of data expected to be returned back

to the browser.

✓ User Interaction

➢ The user interacts with the browser via input devices such as mice, keyboards, and

touchscreens.

➢ The browser has an elaborate event system that captures these users input events and then

takes the appropriate action. Actions vary from displaying a popup menu to loading a new

document from the server to executing client-side JavaScript.

Webserver

➢ The webserver’s main focus is handling requests from browsers.

➢ the browser may request a document, post data, or perform an AJAX request to get a data.

➢ The webserver uses the HTTP headers as well as the URL to determine what action to take.

➢ Different responses things will be generated depending on the server, its configurations and

technologies.

➢ Example: Apache and IIS, are made to serve static files such as .html, .css, and media files.

➢ To handle POST requests that modify server data and AJAX requests to interact with backend

services, webservers need to be extended with server-side scripts.

➢ A server-side program is really anything that can be executed by the webserver to perform the

task the browser is requesting. These can be written in PHP, Python, C, C++, C#, Java, … the

list goes on and on. Webservers such as Apache and IIS provide mechanisms to include server-

side scripts and then wire them up to specific URL locations requested by the browser.

➢ The server-side scripts either generate the response directly by executing their code or connect

with other backend servers such as databases to obtain the necessary information and then use

that information to build and send the appropriateresponse.

✓ Backend Services:

➢ Backend services are services that run behind the webserver and provide data used to build responses to

the browser.

➢ The most common type of backend service is a database that stores information.

6

➢ When a request comes in from the browser that requires information from the database or other backend

service, the server-side script connects to the database, retrieves the information, formats it, and then

sends it back to the browser.

➢ Conversely, when data comes in from a web request that needs to be stored in the database, the server-

side script connects to the database and updates the data.

Understanding the Node.js-to Angular Stack Components:

➢ This web development stack is the Node.js-to-Angular stack comprised of MongoDB, Express,

Angular, and Node.js.

➢ Node.js provides the fundamental platform for development. The backend services and server-side

scripts are all written in Node.js.

➢ MongoDB provides the data store for the website but is accessed via a MongoDB driver Node.js

module.

➢ The webserver is defined by Express, which is also a Node.js module.

➢ The view in the browser is defined and controlled using the Angular framework.

➢ Angular is an MVC framework where the model is made up of JSON or JavaScript objects, the view is

HTML/CSS, and the controller is made up of Angular JavaScript.

Figure 1.2 provides a basic diagram of how the Node.js-to-Angular stack fits into the basic website/web

application model.

The following sections describe each of these technologies and why they were chosen as part of the Node.js-

to-Angular stack.

Figure 1.2 Basic diagram showing where Node.js, Express, MongoDB, and Angular fit in the web

paradigm

Node.js:

➢ Node.js is a development framework based on Google’s V8 JavaScript engine. Therefore, Node.js

code is written in JavaScript and then compiled into machine code by V8 to be executed.

➢ Many of your backend services can be written in Node.js, as can the server-side scripts and any

supporting web application functionality.

7

➢ Node.js is that it is all just JavaScript, so you can easily take functionality from a client-side script and

place it in a server-side script. Also, the webserver can run directly within the Node.js platform as a

Node.js module.

The following are just a few reasons why Node.js is a great framework to start from:

Features of Node.js:

JavaScript end-to-end: One of the biggest advantages to Node.js is that it allows you to write both server-

and client-side scripts in JavaScript. There have always been difficulties in deciding where to put scripting

logic. Too much on the client side makes the client cumbersome and unwieldy, but too much on the server

side slows down web applications and puts a heavy burden on the webserver. With Node.js you can take

JavaScript written on the client and easily adapt it for the server and vice versa. Also, your client developers

and server developers will be speaking the same language.

✓ Event-driven scalability: Node.js applies a different logic to handling web requests. Rather than

having multiple threads waiting to process web requests, they are processed on the same thread

using a basic event model. This allows Node.js webservers to scale in ways that traditional webservers

never can.

✓ Extensibility: Node.js has a great following and an active development community. New modules to

extend Node.js functionality are being developed all the time. Also it is simple to install and include

new modules in Node.js, making it easy to extend a Node.js project to include new functionality in

minutes.

✓ Time: Let’s face it, time is valuable. Node.js is super easy to set up and develop in. In only a few

minutes, you can install Node.js and have a working webserver.

MongoDB:

➢ MongoDB is an agile and scalable NoSQL database. The name Mongo comes from “humongous.” It

is based on the NoSQL document store model, meaning that data is stored in the database as a form

of JSON objects rather than the traditional columns and rows of a relational database.

➢ MongoDB provides great website backend storage for high traffic websites that need to store data such

as user comments, blogs, or other items because it is fast, scalable, and easy to implement.

➢ Node.js supports a variety of DB access drivers, so the data store could just as easily be MySQL or

some other database

The following are some of the reasons that MongoDB really fits in the Node.js stack well:

✓ Document orientation: Because MongoDB is document-oriented, the data is stored in the database in

a format close to what you will be dealing with in both server-side and client-side scripts. This

eliminates the need to transfer data from rows to objects and back.

✓ High performance: MongoDB is one of the highest performing databases available. Especially today

when more and more people interact with websites, it is important to have a backend that can support

heavy traffic.

✓ High availability: MongoDB’s replication model makes it easy to maintain scalability while keeping

high performance.

✓ High scalability: MongoDB’s structure makes it easy to scale horizontally by sharing the data across

multiple servers.

8

✓ No SQL injection: MongoDB is not susceptible to SQL injection (putting SQL statements in web

forms or other input from the browser that compromises the DB security) because objects are stored as

objects, not using SQL strings.

Express:

➢ The Express module acts as the webserver in the Node.js-to-Angular stack. The fact that it is running

in Node.js makes it easy to configure, implement, and control.

➢ The Express module extends Node.js to provide several key components for handling web requests.

This allows you to implement a running webserver in Node.js with only a few lines of code.

➢ For example, the Express module provides the ability to easily set up destination route (URLs) for

users to connect to. It also provides great functionality on working with the HTTP request and response

objects, including things like cookies and HTTP headers.

The following is a partial list of the valuable features of Express:

✓ Route management: Express makes it easy to define routes (URL endpoints) that tie directly to

Node.js script functionality on the server.

✓ Error handling: Express provides built-in error handling for documents not found and other errors.

✓ Easy integration: An Express server can easily be implemented behind an existing reverse proxy

system such as Nginx or Varnish. This allows it to be easily integrated into your existing secured

system.

✓ Cookies: Express provides easy cookie management.

✓ Session and cache management: Express also enables session management and cache management.

Angular:

➢ Angular is a client-side framework developed by Google.

➢ Angular provides all the functionality needed to handle user input in the browser, manipulate data on

the client side, and control how elements are displayed in the browser view.

➢ It is written using TypeScript. The entire theory behind Angular is to provide a framework that makes

it easy to implement web applications using the MVC framework.

✓ Other JavaScript frameworks could be used with the Node.js platform, such as Backbone, Ember, and

Meteor. However, Angular has the best design, feature set,and trajectory at this writing.

 Here are some of the benefits of Angular:(features of Angular)

✓ Data binding: Angular has a clean method to bind data to HTML elements using its powerful scope

mechanism.

✓ Extensibility: The Angular architecture allows you to easily extend almost every aspect of the

language to provide your own custom implementations.

✓ Clean: Angular forces you to write clean, logical code.

✓ Reusable code: The combination of extensibility and clean code makes it easy to write reusable code

in Angular. In fact, the language often forces you to do so when creating custom services.

✓ Support: Google is investing a lot into this project, which gives it an advantage over other similar

initiatives.

9

✓ Compatibility: Angular is based on TypeScript, which makes it easier to begin integrating Angular

into your environment and to reuse pieces of your existing code within the structure of the Angular

framework.

HTML Basics:

Headings, Paragraphs, Links, Images, Lists, Tables, Div Element, Forms.

HTML:

➢ HTML stands for Hypertext Markup Language. which is used for creating web pages and web

applications.

➢ Understanding meaning of Hypertext, Markup Language, and Web page.

➢ Hypertext refers to the way in which Web pages (HTML documents) are linked together. A text has a

link within it, is a hypertext. Whenever you click on a link, it will navigates you to another web

page(document). Thus, the link available on a webpage is called Hypertext.

➢ HTML is a Markup Language which means you use HTML to simply "mark-up" a text document

with tags that tell a Web browser how to structure it to display.

➢ A web page is a simple document displayable by a browser. Such documents are written in

the HTML language). A web page can embed a variety of different types of resources such as:

style information — controlling a page's look-and-feel

scripts — which add interactivity to the page

media — images, sounds, and videos.

➢ A web page can be identified by entering an URL.

➢ A Web page can be of the static or dynamic type. With the help of HTML only, we can create static

web pages.

➢ A website is a collection of linked web pages (plus their associated resources) that share a unique

domain name. Each web page of a given website provides explicit links—most of the time in the form

of clickable portions of text—that allow the user to move from one page of the website to another.

➢ To access a website, type its domain name in your browser address bar, and the browser will display

the website's main web page, or homepage (casually referred as "the home").

➢ An HTML document is simply a text file that contains the information you want to publish and the

appropriate markup instructions indicating how the browser should structure or present the document.

➢ Markup elements are made up of a start tag, such as , and typically, though not always, an

end tag, which is indicated by a slash within the tag, such as . The tag pair should fully

enclose any content to be affected by the element, including text and other HTML markup.

➢ HTML FILE = INFORMATION + MARKUP instructions(tags).

➢ Syntax of HTML element:

➢ HTML Element

➢ An HTML Tag with attributes and content is called HTML Element. Element include start tag, end tag,

attributes and content inside.

➢

https://developer.mozilla.org/en-US/docs/Glossary/Browser
https://developer.mozilla.org/en-US/docs/Glossary/HTML

10

➢ empty elements: An element without content and has no ending tag is called “empty element”.

➢ For example, to insert a line break, use a single
 tag, which represents the empty br element,

because it doesn’t enclose any content and thus has no corresponding close tag:

➢

➢ Empty element is added with “/ “after the element name.

➢

➢ The start tag of an element might contain attributes that modify the meaning of the tag.

➢ For example, in HTML, the simple inclusion of the noshade attribute in an <hr> tag, as shown here:

<hr noshade>

 indicates that there should be no shading applied to this horizontal rule.

➢ Under XHTML, such style attributes are not allowed, because all attributes must have a value, so

instead you have to use syntax like this:

 <hr noshade="noshade" />

Values are always enclosed in either single or double quotes.

➢ Multiple attributes:

➢ Example of html document: structure of html document.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Hello HTML 4 World</title>

<!-- Simple hello world in HTML 4.01 strict example -->

</head>

<body>

<h1>Welcome to the World of HTML</h1>

</body>

11

</html>

➢ <!DOCTYPE> : which indicates the particular version of HTML or XHTML being used in the

document.

➢ <html > :This tag informs the browser that it is an HTML document. Text between html tag describes

the web document. It is a container for all other elements of HTML except <!DOCTYPE>.

➢ <head>: It should be the first element inside the <html> element, which contains the

metadata(information about the document). the information contained within the head element is

information about the page that is useful for visual styling, defining interactivity, setting the page title,

and providing other useful information that describes or controls the document.

➢ <title>: As its name suggested, it is used to add title of that HTML page which appears at the top of

the browser window. It must be placed inside the head tag and should close immediately.

➢ The <meta> : Specifying Content Type, Character Set, and More.

 A <meta> tag has a number of uses.

 For example, it can be used to specify values that are equivalent to HTTP response headers.

 For example, if you want to make sure that your MIME type and character set for an

English-based HTML document is set, you could use Most people would agree that using the UTF-8

character set is probably a good idea for Western-language page authors because it gives them access

to international character glyphs when needed without causing them any trouble:

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"

➢ <body> : Text between body tag describes the body content of the page that is visible to the end user.

This tag contains the main content of the HTML document.

Example:

<!DOCTYPE html>

<html>

<head>

<title> Webpage </title>

</head>

<body>

<h1>This is my first web page </h1>

<h2> How it looks? </h2>

<p>It looks Nice!!!!! </p>

</body>

</html>

12

HTML Heading:

➢ A HTML heading or HTML h tag can be defined as a title or a subtitle which you want to display on

the webpage. When you place the text within the heading tags <h1>.........</h1>, it is displayed on the

browser in the bold format and size of the text depends on the number of heading.

➢ There are six different HTML headings which are defined with the <h1> to <h6> tags, from highest

level h1 (main heading) to the least level h6 (least important heading).

➢ h1 is the largest heading tag and h6 is the smallest one. So h1 is used for most important heading and

h6 is used for least important.

➢ Example:

<!DOCTYPE html>

<html>

<head>

<title> Webpage </title>

</head>

<h1> Welcome to Computer Application </h1>

<h2> Welcome to Computer Application </h2>

<h3> Welcome to Computer Application </h3>

<h4> Welcome to Computer Application </h4>

<h5> Welcome to Computer Application </h5>

 <h6> Welcome to Computer Application </h6>

</body>

</html>

13

Paragraphs:

➢ paragraphs tags or <p> tags in HTML help us create paragraphs on a web page. On web browsers,

paragraphs display as blocks of text separated from adjacent blocks by blank lines, white spaces, or

first-line indentation.

➢ You can use a <p> tag followed by the content you want to display in your paragraph and a </p>.

Whenever the web browser comes across a <p> tag, it starts its contents on a new line.

➢ HTML Paragraph Syntax:

 <p>Paragraph Content</p>

➢ Explanation:

• <p>: Start tag for the paragraph.

• Paragraph Content: The text will appear as a paragraph on a visitor’s screen.

• </h1>: It is the closing tag for the paragraph.

➢ HTML paragraphs help us in multiple ways, such as:

• They make a web page more readable by giving it a structural view.

• Paragraphs can consist of different types of related content, such as text, images, forms, and

more.

➢ Here is a simple example in HTML to display different paragraphs on a web page:

 <!DOCTYPE html>

 <html>

 <head>

14

 <title>Paragraph in HTML</title>

 </head>

 <body>

 <p>

This is paragraph 1. This is paragraph 1. This is paragraph 1. This is paragraph 1. This is

paragraph 1. This is paragraph 1. This is paragraph 1. This is paragraph 1. This is

paragraph 1. This is paragraph 1.

</p>

 <p>

This is paragraph 2.This is paragraph 2. This is paragraph 2.This is paragraph 2.This is

paragraph 2. This is paragraph 2.This is paragraph 2. This is paragraph 2. This is

paragraph

 </p>

 <p>

This is paragraph 3. This is paragraph 3. This is paragraph 3. This is paragraph 3. This is

paragraph 3. This is paragraph 3. This is paragraph 3. This is paragraph 3. This is

paragraph 3. This is paragraph 3. This is paragraph 3.

</p>

</body>

</html>

HTML Paragraph Tag Attributes:

15

Attribute Value Description

align

left

right

center

justify

Aligns the text within a paragraph

Links:

➢ The <a> HTML element (or anchor element), with its href attribute, creates a hyperlink to web pages,

files, email addresses, locations in the same page, or anything else a URL can address.(The <a> tag

defines a hyperlink, which is used to link from one page to another).

➢ The most imp>ortant attribute of the <a> element is the href attribute, which indicates the link's

destination.

➢ By default, links will appear as follows in all browsers:

o An unvisited link is underlined and blue

o A visited link is underlined and purple

o An active link is underlined and red

.

 Example: External Link.

Standard Syntax:

<a

Accesskey = "key"

Charset = "character code for language of linked resource"

Class = "class name(s)"

coords = "comma-separated list of numbers"

dir = "ltr | rtl"

href = "URL"

hreflang = "language code"

id = "unique alphanumeric identifier"

lang = "language code"

name = "name of target location"

rel = "comma-separated list of relationship values"

rev = "comma-separated list of relationship values"

shape="default | circle | poly | rect"

style="style information"

tabindex = "number"

target = "frame or window name | _blank | _parent | _self | _top"

title = "advisory text"

type="content type of linked data" >

HTML 4 Event Attributes:

onblur, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,

https://developer.mozilla.org/en-US/docs/Web/HTML

16

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup.

ATTRIBUTES:

charset: This attribute defines the character encoding of the linked resource.

href : This is the single required attribute for anchors defining a hypertext source link. It indicates the link

target—either a URL or a URL fragment, which is a name preceded by a hash mark (#) specifying an internal

target location within the current document. URLs are not restricted to Web-based (http) documents. URLs

might use any protocol supported by the browser.

 For example, file, ftp, and mailto work in most user agents.

hreflang :This attribute is used to indicate the language of the linked resource and should be set to whichever

language is specified in the core lang attribute.

Download: Specifies that the target will be downloaded when a user clicks on the hyperlink.

Target: Specifies where to open the linked document.

 _blank, which indicates a new window.

 _parent, which indicates the parent frame set containing the source link;

 _self, which indicates the frame containing the source link.

 _top, which indicates the full browser window.

Attribute Value Description

download filename Specifies that the target will be downloaded when a

user clicks on the hyperlink

href URL Specifies the URL of the page the link goes to

hreflang language_code Specifies the language of the linked document

ping list_of_URLs Specifies a space-separated list of URLs to which, when

the link is followed, post requests with the body ping

will be sent by the browser (in the background).

Typically used for tracking.

referrerpolicy no-referrer

no-referrer-

when-

downgrade

origin

origin-when-

cross-origin

same-origin

strict-origin-

Specifies which referrer information to send with the

link

https://www.w3schools.com/tags/att_a_target.asp
https://www.w3schools.com/tags/att_a_download.asp
https://www.w3schools.com/tags/att_a_href.asp
https://www.w3schools.com/tags/att_a_hreflang.asp
https://www.w3schools.com/tags/att_a_ping.asp
https://www.w3schools.com/tags/att_a_referrepolicy.asp

17

when-cross-

origin

unsafe-url

rel alternate

author

bookmark

external

help

license

next

nofollow

noreferrer

noopener

prev

search

tag

Specifies the relationship between the current document

and the linked document

target _blank

_parent

_self

_top

Specifies where to open the linked document

type media_type Specifies the media type of the linked document

shape :This attribute is used to define a selectable region for hypertext source links associated with a figure in

order to create an image map. The values for the attribute are circle, default, polygon, and rect.

The format of the coords attribute depends on the value of shape. For circle, the value is x,y,r, where x and y

are the pixel coordinates for the center of the circle and r is the radius value in pixels. For rect, the coords

attribute should be x,y,w,h. The x,y values define the upper-left corner of the rectangle, while w and h define

the width and height, respectively.

A value of polygon for shape requires x1,y1,x2,y2,… values for coords. Each of the x,y pairs defines a point

in the polygon, with successive points being joined by straight lines and the last point joined to the first. The

value of default for shape requires that the entire enclosed area, typically an image, be used.

coords : For use with object shapes, this attribute uses a comma-separated list of numbers to define the

coordinates of the object on the page.

Examples:

<!-- anchor linking to external file -->

External Link

<!-- anchor linking to file on local file system -->

local file link

<!-- anchor invoking anonymous FTP -->

Anonymous FTP link

https://www.w3schools.com/tags/att_a_rel.asp
https://www.w3schools.com/tags/att_a_target.asp
https://www.w3schools.com/tags/att_a_type.asp

18

<!-- anchor invoking FTP with password -->

 FTP with password

<!-- anchor invoking mail -->

Send mail

<!-- anchor used to define target destination within document -->

Jump target

<!-- anchor linking internally to previous target anchor -->

Local jump within document

<!-- anchor linking externally to previous target anchor -->

 Remote jump to a position within a

document

Images

This element indicates a media object to be included in an (X)HTML document. Usually, the object is a

bitmap graphic image, but some implementations support movies, vector formats, and animations.

Or

The HTML tag is used to embed an image in a web page.

Images are not technically inserted into a web page; images are linked to web pages. The tag creates a

holding space for the referenced image.

The tag is empty element.

Attributes:

Standard Syntax:

<img

align="bottom | left | middle | right | top" (transitional only)

alt="alternative text"

border="pixels" (transitional only)

class="class name(s)"

dir="ltr | rtl"

height="pixels"

hspace="pixels" (transitional only)

id="unique alphanumeric identifier"

ismap="ismap"

lang="language code"

longdesc="URL of description file"

name="unique alphanumeric identifier"

src="URL of image"

style="style information"

title="advisory text"

usemap="URL of map file"

vspace="pixels" (transitional only)

width="pixels">

align: This attribute controls the horizontal alignment of the image with respect to the page. The default value

is left.

19

src : This attribute indicates the URL of an image file to be displayed. Most browsers will display .gif, .jpeg,

and .png files directly.

Alt: This attribute contains a string to be displayed instead of the image for browsers that cannot display

images.

Border: This attribute indicates the width, in pixels, of the border surrounding the image.

Dynsrc: In the Microsoft implementation, this attribute indicates the URL of a movie file and is used instead

of the src attribute. Common formats used here are .avi (Audio-Visual Interleaved), .mov (QuickTime), and

.mpg and .mpeg (Motion Picture Experts Group).

Ismap: This attribute indicates that the image is a server-side image map. User mouse actions over the image

are sent to the server for processing.

longdesc This attribute specifies the URL of a document that contains a long description of the image. This

attribute is used as a complement to the alt attribute.

loop In the Microsoft implementation, this attribute is used with the dynsrc attribute to cause a movie to loop.

Its value is either a numeric loop count or the keyword infinite.

lowsrc This nonstandard attribute, supported in most browsers, contains the URL of an image to be initially

loaded. Typically, the lowsrc image is a low-resolution or black-andwhite image that provides a quick preview

of the image to follow. Once the primary image is loaded, it replaces the lowsrc image.

Name: This common attribute is used to bind a name to the image.

start : In the Microsoft implementation, this attribute is used with the dynsrc attribute to indicate when a

movie should play. The default value, if no value is specified, is to play the video as soon as it has finished

loading. Alternatively, a value of mouseover can be set to play the move once the user has moved their mouse

over the video.

usemap This attribute makes the image support client-side image mapping. Its argument is a URL specifying

the map file, which associates image regions with hyperlinks. The URL is generally a fragment identifier that

references a location in the current document rather than a remote resource.

HTML Image Maps:

With HTML image maps, you can create clickable areas on an image.

The HTML <map> tag defines an image map. An image map is an image with clickable areas. The areas are

defined with one or more <area> tags.

The Image

The image is inserted using the tag. The only difference from other images is that you must add

a usemap attribute:

The usemap value starts with a hash tag # followed by the name of the image map, and is used to create a

relationship between the image and the image map.

Create Image Map

20

Then, add a <map> element.

The <map> element is used to create an image map, and is linked to the image by using the

required name attribute:

Shape="rect"

The coordinates for shape="rect" come in pairs, one for the x-axis and one for the y-axis.

So, the coordinates 34,44 is located 34 pixels from the left margin and 44 pixels from the top:

The coordinates 270,350 is located 270 pixels from the left margin and 350 pixels from the top:

<area shape="rect" coords="34, 44, 270, 350" href="computer.htm">

Categories of Attributes:

Core Attributes:

The four core attributes that can be used on the majority of HTML elements (although not all)

are:

• Id

• Title

• Class

• Style

➢ The Id Attribute

The id attribute of an HTML tag can be used to uniquely identify any element within an HTML page. There

are two primary reasons that you might want to use an id attribute on an element:

• If an element carries an id attribute as a unique identifier, it is possible to identify just that element and

its content.

• If you have two elements of the same name within a Web page (or style sheet), you can use the id

attribute to distinguish between elements that have the same name.

Example

<p id="html">This para explains what is HTML</p>

<p id="css">This para explains what is Cascading Style Sheet</p>

➢ The title Attribute

21

The title attribute gives a suggested title for the element. They syntax for the title attribute is similar as

explained for id attribute:

The behavior of this attribute will depend upon the element that carries it, although it is often displayed as a

tooltip when cursor comes over the element or while the element is loading.

Example:

 <html>

<head>

<title>The title Attribute Example</title>

</head>

<body>

<h3 title="Hello HTML!">Titled Heading Tag Example</h3>

</body>

</html>

This will produce the following result:

Titled Heading Tag Example

Now try to bring your cursor over "Titled Heading Tag Example" and you will see that whatever title you used

in your code is coming out as a tooltip of the cursor.

➢ The class Attribute

The class attribute is used to associate an element with a style sheet, and specifies the class of element. You

will learn more about the use of the class attribute when you will learn Cascading Style Sheet (CSS). So for

now you can avoid it.

The value of the attribute may also be a space-separated list of class names.

 For example:

class="className1 className2 className3"

➢ The style Attribute

The style attribute allows you to specify Cascading Style Sheet (CSS) rules within the element.

<!DOCTYPE html>

<html>

<head>

<title>The style Attribute</title>

</head>

<body>

<p style="font-family:arial; color:#FF0000;">Some text...</p>

22

</body>

</html>

This will produce the following result:

Some text...

Internationalization Attributes:

There are three internationalization attributes, which are available for most (although not all) XHTML

elements.

• dir

• lang

• xml:lang

The dir Attribute

The dir attribute allows you to indicate to the browser about the direction in which the text should flow. The

dir attribute can take one of two values, as you can see in the table that follows:

Value Meaning

ltr Left to right (the default value)

rtl Right to left (for languages such as Hebrew or Arabic that are read right to left).

Example:

<!DOCTYPE html>

<html dir="rtl">

<head>

<title>Display Directions</title>

</head>

<body>

This is how IE 5 renders right-to-left directed text.

</body>

</html>

This will produce the following result:

This is how IE 5 renders right-to-left directed text.

The lang Attribute:

The lang attribute allows you to indicate the main language used in a document, but this attribute was kept in

HTML only for backwards compatibility with earlier versions of HTML. This attribute has been replaced by

the xml:lang attribute in new XHTML documents.

23

The values of the lang attribute are ISO-639 standard two-character language codes. Check

HTML Language Codes: ISO 639 for a complete list of language codes.

<!DOCTYPE html>

<html lang="en">

<head>

<title>English Language Page</title>

</head>

<body>

This page is using English Language

</body>

</html>

Generic Attributes:

Here's a table of some other attributes that are readily usable with many of the HTML tags.

Attribute Options Function

align right, left, center Horizontally aligns tags

valign top, middle, bottom Vertically aligns tags within an HTML

 element.

bgcolor numeric, hexidecimal, RGB Places a background color behind an

 values element

background URL Places a background image behind an

 element

id User Defined Names an element for use with Cascading

 Style Sheets.

class User Defined Classifies an element for use with Cascading

 Style Sheets.

width Numeric Value Specifies the width of tables, images, or

 table cells.

height Numeric Value Specifies the height of tables, images, or

 table cells.

title User Defined "Pop-up" title of the elements.

HTML LIST

HTML List is a collection of related infomation.

The lists can be ordered or underdered depending on the requirement. In html we can create both order and

unorder lists by using and tags. There is one more list which is description list -

https://www.tutorialspoint.com/html/html_ol_tag.htm
https://www.tutorialspoint.com/html/html_ul_tag.htm

24

HTML <dl>, <dt> & <dd> tag are used to create description lists.

three ways for specifying lists of information namely ordered, unordered, and definition lists. All lists must

contain one or more list items. Items are marked by .

HTML Unorder Lists

Unorder lists are marked with bullet points, by using html & tag we can create a unorder list. This is

also know as unorder list.

<!DOCTYPE html>

<html>

<head>

 <title>HTML List</title>

</head>

<body>

 <h2>Example of HTML List</h2>

 HTML

 CSS

 JavaScript

 Java

 JavaFX

</body>

</html>

Output:

Example of HTML List

• HTML

• CSS

• JavaScript

• Java

• JavaFX

By default, list items are preceded with bullet symbol. Using type attribute we can have other symbols also

such as disc, square.

HTML Order Lists:

https://www.tutorialspoint.com/html/html_dl_tag.htm
https://www.tutorialspoint.com/html/html_dt_tag.htm
https://www.tutorialspoint.com/html/html_dd_tag.htm
https://www.tutorialspoint.com/html/html_ul_tag.htm
https://www.tutorialspoint.com/html/html_li_tag.htm

25

Order list are marked with numbers by default, we can xhnage the number into alphabet, roman numbers, etc.

By using html & tag we can create a order list and using type attribute we can change the default

numeric marking.

<!DOCTYPE html>

<html>

<head>

 <title>HTML List</title>

</head>

<body>

 <h2>Example of HTML List</h2>

 HTML

 CSS

 JavaScript

 Java

 JavaFX

</body>

</html>

Output:

Example of HTML List

1. HTML

2. CSS

3. JavaScript

4. Java

5. JavaFX

By default, list items are preceded with decimal number symbol. Using type attribute, we can have other

symbols also such as roman, alphabets.

HTML Description Lists

Description list is list of items with description, to create a description list we can use <dl>, <dt> & <dd> tag.

In which <dl> refers to the description list.

<dt> refers to the data term.<dd> refers to the data definition.

https://www.tutorialspoint.com/html/html_ol_tag.htm
https://www.tutorialspoint.com/html/html_li_tag.htm
https://www.tutorialspoint.com/html/html_dl_tag.htm
https://www.tutorialspoint.com/html/html_dt_tag.htm
https://www.tutorialspoint.com/html/html_dd_tag.htm

26

<!DOCTYPE html>

<html>

<head>

 <title>HTML List</title>

</head>

<body>

 <h2>Example of HTML List</h2>

 <dl>

 <dt>HTML</dt>

 <dd>HyperText markup languague</dd>

 <dt>CSS</dt>

 <dd>Cascading Style Sheet</dd>

 <dt>JS</dt>

 <dd>JavaScript</dd>

 </dl>

</body>

</html>

Example of HTML List

HTML

HyperText markup languague

CSS

Cascading Style Sheet

JS

JavaScript

HTML TABLES

An HTML Table is an arrangement (structured set) of data in rows and columns in tabular

format. Tables are useful for various tasks, such as presenting text information and numerical data.

Tags used in HTML Tables:

HTML Tags Descriptions

<table>

Defines the structure for organizing data in rows and columns within a web

page.

<tr> Represents a row within an HTML table, containing individual cells.

https://www.geeksforgeeks.org/html-tables
https://www.geeksforgeeks.org/html-tr-tag

27

HTML Tags Descriptions

<th> Shows a table header cell that typically holds titles or headings.

<td> Represents a standard data cell, holding content or data.

<caption> Provides a title or description for the entire table.

<thead> Defines the header section of a table, often containing column labels.

<tbody>

Represents the main content area of a table, separating it from the header or

footer.

<tfoot> Specifies the footer section of a table, typically holding summaries or totals.

<col>

Defines attributes for table columns that can be applied to multiple columns

at once.

<colgroup>

Groups together a set of columns in a table to which you can apply

formatting or properties collectively.

Defining Tables in HTML:

An HTML table is defined with the “table” tag. Each table row is defined with the “tr” tag. A table header is

defined with the “th” tag. By default, table headings are bold and centered. A table data/cell is defined with

the “td” tag.

Table Cells:

Table Cell are the building blocks for defining the Table. It is denoted with <td> as a start tag & </td> as a

end tag.

Syntax:

 </td> Content...</td>

Table Rows:

The rows can be formed with the help of combination of Table Cells. It is denoted by <tr> and </tr> tag as a

start & end tags.

Syntax:

</tr> Content...</tr>

Table Headers

https://www.geeksforgeeks.org/differentiate-between-th-thead-tags-in-html-table
https://www.geeksforgeeks.org/html-td-tag
https://www.geeksforgeeks.org/html-caption-tag
https://www.geeksforgeeks.org/html-thead-tag
https://www.geeksforgeeks.org/html-tbody-tag
https://www.geeksforgeeks.org/html-tfoot-tag
https://www.geeksforgeeks.org/html-col-tag
https://www.geeksforgeeks.org/html-colgroup-tag

28

The Headers are generally use to provide the Heading. The Table Headers can also be used to add the

heading to the Table. This contains the <th> & </th> tags.

Syntax:

</th> Content...</th>

Example 1: Creating a simple table in HTML using a table tag.

<!-- index.html -->

<!DOCTYPE html>

<html>

<body>

 <table>

 <tr>

 <th>Book Name</th>

 <th>Author Name</th>

 <th>Genre</th>

 </tr>

 <tr>

 <td>The Book Thief</td>

 <td>Markus Zusak</td>

 <td>Historical Fiction</td>

 </tr>

 <tr>

 <td>The Cruel Prince</td>

 <td>Holly Black</td>

 <td>Fantasy</td>

 </tr>

 <tr>

 <td>The Silent Patient</td>

 <td> Alex Michaelides</td>

 <td>Psychological Fiction</td>

 </tr>

 </table>

</body>

</html>

Attribute Description

accesskey Specifies a shortcut key to activate/focus an element

class Specifies one or more classnames for an element (refers to a class in a style sheet)

29

dir Specifies the text direction for the content in an element

draggable Specifies whether an element is draggable or not

id Specifies a unique id for an element

lang Specifies the language of the element's content

spellcheck Specifies whether the element is to have its spelling and grammar checked or not

style Specifies an inline CSS style for an element

title Specifies extra information about an element

border Border for the table cells.

rowspan Used to combine row cells.

colspan Used to combine column cells.

example:

<colgroup>

 <col span="2" style="background-color: #D6EEEE">

</colgroup>

<colgroup> will apply background color will be applied to two colums.

HTML Div Element

The <div> element is used as a container for other HTML elements.Defines a section in a document (block-

level)

The <div> Element:

The <div> element is by default a block element, meaning that it takes all available width, and comes with line

breaks before and after.

Example:

<div>

 <h2>Motivation</h2>

 <p>Your present circumstances don’t determine where you can go; they merely determine

where you start.</p>

 <p>Start where you are. Use what you have. Do what you can</p>

</div>

30

<div> as a container:

The <div> element is often used to group sections of a web page together.

Center align a <div> element:

If you have a <div> element that is not 100% wide, and you want to center-align it, set the

CSS margin property to auto.

 Example:

<style>

div {

 width:300px;

 margin:auto;

}

</style>

Multiple <div> elements

You can have many <div> containers on the same page.

Aligning <div> elements side by side

When building web pages, you often want to have two or more <div> elements side by side, like this:

There are different methods for aligning elements side by side, all include some CSS styling. We will look at

the most common methods:

 Float

The CSS float property

was not originally meant

to align <div> elements

side-by-side, but has been

used for this purpose for

many years.

The CSS float property is

used for positioning and

formatting content and

allow elements float next

Inline-block

If you change

the <div> element's display property

from block to inline-block,

the <div> elements will no longer

add a line break before and after,

and will be displayed side by side

instead of on top of each other.

<style>

div {

 width: 30%;

Flex

The CSS Flexbox Layout

Module was introduced to

make it easier to design

flexible responsive layout

structure without using

float or positioning.

To make the CSS flex

method work, surround

the <div> elements with

another <div> element

31

to each other instead of

on top of each other.

Example

How to use float to align

div elements side by side:

<style>

.mycontainer {

 width:100%;

 overflow:auto;

}

.mycontainer div {

 width:33%;

 float:left;

}

</style>

 display: inline-block;

}

</style>

and give it the status as a

flex container.

Example

How to use flex to align

div elements side by

<style>

.mycontainer {

 display: flex;

}

.mycontainer > div {

 width:33%;

}

</style> side:

Grid

The CSS Grid Layout Module offers a grid-based layout system, with rows and columns, making it easier to

design web pages without having to use floats and positioning.

Sounds almost the same as flex, but has the ability to define more than one row and position each row

individually.

The CSS grid method requires that you surround the <div> elements with another <div> element and give the

status as a grid container, and you must specify the width of each column.

Example

How to use grid to align <div> elements side by side:

<style>

.grid-container {

 display: grid;

 grid-template-columns: 33% 33% 33%;

}

</style>

HTML Forms

An HTML form is used to collect user input. The user input is most often sent to a server for processing.

32

The <form> Element

The HTML <form> element is used to create an HTML form for user input:

<form>

.

form elements

.

</form>

The <form> element is a container for different types of input elements, such as: text fields, checkboxes, radio

buttons, submit buttons, etc.

The HTML <form> element can contain one or more of the following form elements:

• <input>

• <label>

• <select>

• <textarea>

• <button>

• <fieldset>

• <legend>

• <datalist>

• <output>

• <option>

• <optgroup>

HTML Form Attributes:

The Action Attribute:

The action attribute defines the action to be performed when the form is submitted.

Usually, the form data is sent to a file on the server when the user clicks on the submit button.

Example:

 <form action="/login.js">

 <label for="fname">First name:</label>

 <input type="text" id="fname" name="fname" value="John">

 <input type="submit" value="Submit">

 </form>

The Target Attribute:

33

The target attribute specifies where to display the response that is received after submitting the form.

The target attribute can have one of the following values:

The Method

Attribute:

The method attr

ibute specifies

the HTTP

method to be

used when

submitting the

form data.

The form-data can be sent as URL variables (with method="get") or as HTTP post transaction

(with method="post").

The default HTTP method when submitting form data is GET.

Example

This example uses the GET method when submitting the form data:

<form action="/action_page.js" method="get">

Notes on GET:

• Appends the form data to the URL, in name/value pairs

• NEVER use GET to send sensitive data! (the submitted form data is visible in the URL!)

• The length of a URL is limited (2048 characters)

• Useful for form submissions where a user wants to bookmark the result

• GET is good for non-secure data, like query strings in Google

Notes on POST:

• Appends the form data inside the body of the HTTP request (the submitted form data is not shown in

the URL)

• POST has no size limitations, and can be used to send large amounts of data.

• Form submissions with POST cannot be bookmarked

The Autocomplete Attribute

The autocomplete attribute specifies whether a form should have autocomplete on or off.

Value Description

_blank The response is displayed in a new window or tab

_self The response is displayed in the current window

_parent The response is displayed in the parent frame

_top The response is displayed in the full body of the window

framename The response is displayed in a named iframe

34

When autocomplete is on, the browser automatically complete values based on values that the user has entered

before.

The Novalidate Attribute

The novalidate attribute is a boolean attribute.

When present, it specifies that the form-data (input) should not be validated when submitted.

 HTML FORM ELEMENTS

1.HTML Input Types:

different input types you can use in HTML

SYNTAX DESCRIPTION

<input type="text"> defines a single-line text input field

<input type="password"> defines a password field

<input type="submit">

defines a button for submitting form data to a form-handler.

The form-handler is typically a server page with a script for

processing input data. The form-handler is specified in the

form's action attribute.

<input type="reset">
defines a reset button that will reset all form values to their

default values

<input type="radio">
defines a radio button. Radio buttons let a user select ONLY

ONE of a limited number of choices

<input type="checkbox">
defines a checkbox. Checkboxes let a user select ZERO or

MORE options of a limited number of choices

<input type="button"> defines a button.

<input type="color">

is used for input fields that should contain a colour.

Depending on browser support, a color picker can show up in

the input field

<input type="date">

is used for input fields that should contain a date.

Depending on browser support, a date picker can show up in the

input field. You can also use the min and max attributes to add

restrictions to dates. EX: max="1979-12-31"

<input type="datetime-

local">
specifies a date and time input field, with no time zone

<input type="email"> is used for input fields that should contain an e-mail address

<input type="image">

defines an image as a submit button. The path to the image is

specified in the src attribute. EX: <input type="image"

src="img_submit.gif" alt="Submit" width="48" height="48">

<input type="file"> defines a file-select field and a "Browse" button for file uploads.

<input type="hidden"> defines a hidden input field (not visible to a user)

<input type="month"> allows the user to select a month and year.

35

<input type="number">

defines a numeric input field.

EX: <input type="number" id="quantity" name="quantity"

min="1" max="5">

<input type="range">
defines a control for entering a number whose exact value is not

important (like a slider control). Default range is 0 to 100

<input type="search">
is used for search fields (a search field behaves like a regular

text field

<input type="tel">

is used for input fields that should contain a telephone number.

EX:<input type="tel" id="phone" name="phone" pattern="[0-

9]{3}-[0-9]{2}-[0-9]{3}">

<input type="time"> allows the user to select a time (no time zone).

<input type="url"> is used for input fields that should contain a URL address.

<input type="week"> allows the user to select a week and year.

HTML Input Attributes:

different attributes for the HTML <input> element.

ATTRIBUTE DESCRIPTION

value
attribute specifies an initial value(default) for an input field. Ex:

<input type="text" id="fname" name="fname" value="John">

readonly

attribute specifies that an input field is read-only.A read-only input field cannot be

modified.

Ex: <input type="text" id="fname" name="fname" value="John" readonly>

disabled
attribute specifies that an input field should be disabled.

Ex:<input type="text" id="fname" name="fname" value="John" disabled>

size
attribute specifies the visible width, in characters, of an input field.The default value for

size is 20. EX:

<input type="text" id="fname" name="fname" size="50">

maxlength
attribute specifies the maximum number of characters allowed in an input field.

EX:<input type="text" id="pin" name="pin" maxlength="4" size="4">

min and max

attributes specify the minimum and maximum values for an input field.The min and

max attributes work with the following input types: number, range, date, datetime-local,

month, time and week.

multiple
attribute specifies that the user is allowed to enter more than one value in an input field.

forinput types: email, and file

pattern

attribute specifies a regular expression that the input field's value is checked against,

when the form is submitted.pattern attribute works with the following input types: text,

date, search, url, tel, email, and password.

Ex: <input type="text" id="country_code" name="country_code"

 pattern="[A-Za-z]{3}" title="Three letter country code">

36

placeholder

attribute specifies a short hint that describes the expected value of an input field (a

sample value or a short description of the expected format).

The short hint is displayed in the input field before the user enters a value.The

placeholder attribute works with the following input types: text, search, url, number, tel,

email, and password. Ex:

<input type="tel" id="phone" name="phone" placeholder="123-45-678">

required

attribute specifies that an input field must be filled out before submitting the form. The

required attribute works with the following input types: text, search, url, tel, email,

password, date pickers, number, checkbox, radio, and file Ex: <input type="text"

id="username" name="username" required>

step
attribute specifies the legal number intervals for an input field.

Example: if step="3", legal numbers could be -3, 0, 3, 6, etc.

Ex:<input type="number" id="points" name="points" step="3">

autofocus
attribute specifies that an input field should automatically get focus when the page

loads. Ex:<input type="text" id="fname" name="fname" autofocus>

height and

width attributes specify the height and width of an <input type="image"> element.

Ex:<input type="image" src="img_submit.gif" alt="Submit" width="48" height="48">

list and

<datalist> element that contains pre-defined options for an <input> element.

autocomplete
attribute specifies whether a form or an input field should have autocomplete on or off.

2. <label> Element:

The <label> element defines a label for several form elements.

The for attribute of the <label> tag should be equal to the id attribute of the <input> element to bind them

together.

3.<select> Element:

The <select> element defines a drop-down list. The <option> element defines an option that can be selected.

By default, the first item in the drop-down list is selected. To define a pre-selected option, add

the selected attribute to the option. Use the size attribute to specify the number of visible values:

<label for="B.TECH">Choose Programme</label>

<select id="course" name="course" size=3 multiple>

 <option value="CSE">CSE</option>

 <option value="IT">IT</option>

 <option value="AIML" selected>AIML</option>

 <option value="DS">DATASCIENCE</option>

</select>

Use the multiple attribute to allow the user to select more than one value.

37

4. <textarea> Element:

The <textarea> element defines a multi-line input field (a text area). The rows attribute specifies the visible

number of lines in a text area. The cols attribute specifies the visible width of a text area.

 <textarea name="message" rows="10" cols="30">

 write content here

 </textarea>

5. <button> Element:

The <button> element defines a clickable button.

<button type="button" onclick="alert('Hello World!')">Click Me!</button>

6.<fieldset> and <legend> Elements:

The <fieldset> element is used to group related data in a form.

The <legend> element defines a caption for the <fieldset> element.

38

CSS

CSS (Cascading Style Sheets) is a language designed to simplify the process of making web pages

presentable. It allows you to apply styles to HTML documents, describing how a webpage should look by

prescribing colors, fonts, spacing, and positioning. CSS provides developers and designers with powerful

control over the presentation of HTML elements.

HTML uses tags and CSS uses rulesets. CSS styles are applied to the HTML element using selectors. CSS is

easy to learn and understand, but it provides powerful control over the presentation of an HTML document.

Syntax

CSS consists of style rules that are interpreted by the browser and applied to the corresponding elements. A

style rule set includes a selector and a declaration block.

• Selector: Targets specific HTML elements to apply styles.

• Declaration: Combination of a property and its corresponding value.

<h1>GeeksforGeeks</h2>

// CSS Style

h1 { color: blue; font-size: 12px; }

Where -

Selector - h1

Declaration - { color: blue; font-size: 12px; }

• The selector points to the HTML element that you want to style.

• The declaration block contains one or more declarations separated by semicolons.

• Each declaration includes a CSS property name and a value, separated by a colon.

•

Types of CSS

CSS (Cascading Style Sheets) is used to style and layout of web pages, and controlling the appearance of

HTML elements. CSS targets HTML elements and applies style rules to dictate their appearance.

Below are the types of CSS:

• Inline CSS

• Internal or Embedded CSS

• External CSS

1. Inline CSS

Inline CSS involves applying styles directly to individual HTML elements using the style attribute. This

method allows for specific styling of elements within the HTML document, overriding any external or

internal styles.

<p style="color:#009900;

 font-size:50px;

 font-style:italic;

 text-align:center;">

 Inline CSS

</p>

Output:

39

2. Internal or Embedded CSS

Internal or Embedded CSS is defined within the HTML document’s <style> element. It applies styles to

specified HTML elements. The CSS rule set should be within the HTML file in the head section i.e. the CSS

is embedded within the <style> tag inside the head section of the HTML file.

<!DOCTYPE html>

<html>

<head>

 <style>

 .main {

 text-align: center;

 }

 .GFG {

 color: #009900;

 font-size: 50px;

 font-weight: bold;

 }

 .geeks {

 font-style: bold;

 font-size: 20px;

https://www.geeksforgeeks.org/internal-css/

40

 }

 </style>

</head>

<body>

 <div class="main">

 <div class="GFG">Internal CSS</div>

 <div class="geeks">

 Implementation of Internal CSS

 </div>

 </div>

</body>

</html>

3. External CSS

External CSS contains separate CSS files that contain only style properties with the help of tag attributes

(For example class, id, heading, … etc). CSS property is written in a separate file with a .css extension and

should be linked to the HTML document using a link tag. It means that, for each element, style can be set

only once and will be applied across web pages.

Html File

<!DOCTYPE html>

<html>

<head>

 <link rel="stylesheet" href="style.css">

</head>

<body>

 <div class="main">

 <div class="GFG">External CSS </div>

 <div id="geeks">

 This shows implementation of External CSS

 </div>

 </div>

</body>

</html>

CSS file

body {

https://www.geeksforgeeks.org/external-css/

41

 background-color: powderblue;

}

.main {

 text-align: center;

}

.GFG {

 color: #009900;

 font-size: 50px;

 font-weight: bold;

}

#geeks {

 font-style: bold;

 font-size: 20px;

}

CSS Selectors

CSS selectors target the HTML elements on your pages, allowing you to add styles based on their ID, class,

type, attribute, and more. This guide will help you to understand the intricacies of CSS selectors and their

important role in enhancing the user experience of your web pages. Understanding these selectors—such as

the universal selector, attribute selector, pseudo-class selector, and combinatory selectors—enables more

efficient and dynamic web design.

Types of CSS Selectors

CSS selectors come in various types, each with its unique way of selecting HTML elements. Let’s explore

them:

CSS Selectors Description

Simple Selectors
It is used to select the HTML elements based on

their element name, id, attributes, etc

Universal Selector Selects all elements on the page.

Attribute Selector Targets elements based on their attribute values.

Pseudo-Class Selector

Selects elements based on their state or position,

such as :hover for hover effects.

Combinator Selectors

Combine selectors to specify relationships

between elements, such as descendants () or child

(>).

Pseudo-Element Selector

Selects specific parts of an element, such

as ::before or ::after.

https://www.geeksforgeeks.org/css-selector
https://www.geeksforgeeks.org/css-attribute-selector
https://www.geeksforgeeks.org/css-pseudo-classes
https://www.geeksforgeeks.org/css-combinators
https://www.geeksforgeeks.org/css-pseudo-elements

42

CSS Background

The CSS background is the area behind an element’s content, which can be a color, image, or both. The

background property lets you control these aspects, including color, image, position, and repetition.

CSS Background Property

The CSS Background is a shorthand property for the following:

Background Property Description

background-color

Defines the background color of an element using color names, HEX, or RGB

values.

background-image Adds one or more images as the background of an element.

background-repeat

Specifies how the background image should be repeated—horizontally, vertically,

or not at all.

background-

attachment

Controls the scrolling behavior of the background image, making it fixed or

scrollable with the page.

background-position Determines the initial position of the background image within the element.

background-origin

Adjusts the placement of the background image relative to the padding, border, or

content box.

background-clip

Sets how far the background (color or image) should extend within an element

(e.g., to the padding or border).

CSS Borders

Borders in CSS are used to create a visible outline around an element. They can be customized in terms of

• Width: The thickness of the border.

• Style: The appearance of the border (solid, dashed, dotted, etc.).

• Color: The color of the border.

Syntax:

• element {

 border: 1px solid black;

}

CSS Border Properties

CSS provides several properties to control and customize borders:

Property Description

https://www.geeksforgeeks.org/css-background-color-property/
https://www.geeksforgeeks.org/css-background-image-property
https://www.geeksforgeeks.org/css-background-repeat-property
https://www.geeksforgeeks.org/css-background-attachment-property/
https://www.geeksforgeeks.org/css-background-attachment-property/
https://www.geeksforgeeks.org/css-background-position-property
https://www.geeksforgeeks.org/css-background-origin-property
https://www.geeksforgeeks.org/css-background-clip-property

43

Property Description

border-style Determines the type of border (e.g., solid, dashed, dotted).

border-width Sets the width of the border (in pixels, points, or other units).

border-color Specifies the border color.

border-radius Creates rounded corners for elements.

CSS Fonts

CSS fonts control how text appears on a webpage. With CSS, you can specify various properties like font

family, size, weight, style, and line height to create visually appealing and readable typography

Key Properties of CSS Fonts

To customize fonts effectively in web design, it’s crucial to understand the main CSS font properties:

• font-family: Specifies the font type.

• font-size: Determines the size of the text.

• font-weight: Adjusts the thickness of the text.

• font-style: Controls the slant of the text (e.g., italic).

• line-height: Sets the space between lines of text.

• letter-spacing: Modifies the space between characters.

• text-transform: Controls the capitalization of text.

CSS Text Formatting

CSS Text Formatting allows you to control the visual presentation of text on a webpage. From changing

fonts to adjusting spacing and alignment, CSS provides powerful properties to enhance the readability and

aesthetic of text.

• CSS lets you adjust font properties, text alignment, spacing, and decorations.

• It helps in creating visually appealing text and improving the user experience.

• Various text-related properties can be combined to achieve unique text styles and layouts.

CSS Text Formatting Properties

These are the following text formatting properties.

Property Description

text-color Sets the color of the text using color name, hex value, or RGB value.

text-align Specifies horizontal alignment of text in a block or table-cell element.

text-align-last Sets alignment of last lines occurring in an element.

https://www.geeksforgeeks.org/css-border-style-property/
https://www.geeksforgeeks.org/css-border-width-property/
https://www.geeksforgeeks.org/css-border-color-property/
https://www.geeksforgeeks.org/css-border-radius-property/
https://www.geeksforgeeks.org/css-colors
https://www.geeksforgeeks.org/css-text-align-property
https://www.geeksforgeeks.org/css-text-align-last-property

44

Property Description

text-decoration Decorates text content.

text-decoration-color Sets color of text decorations like overlines, underlines, and line-throughs.

text-decoration-line Sets various text decorations like underline, overline, line-through.

text-decoration-style Combines text-decoration-line and text-decoration-color properties.

text-indent Indents first line of paragraph.

text-justify Justifies text by spreading words into complete lines.

text-overflow Specifies hidden overflow text.

text-transform Controls capitalization of text.

text-shadow Adds shadow to text.

letter-spacing Specifies space between characters of text.

line-height Sets space between lines.

direction Sets text direction.

word-spacing Specifies space between words of line.

CSS Tables

Tables in CSS are used to style HTML table elements, allowing data to be presented in a structured,

organized format with rows and columns. CSS provides a variety of properties that can be applied to tables

to enhance their appearance and functionality.

CSS Table Properties

1. Border

The border property defines the appearance of borders around table elements (e.g., table, tr, td, th). It

specifies the border’s width, style, and color.

https://www.geeksforgeeks.org/css-text-decoration-style-property
https://www.geeksforgeeks.org/css-text-decoration-color-property
https://www.geeksforgeeks.org/css-text-decoration-line-property
https://www.geeksforgeeks.org/css-text-decoration-style-property
https://www.geeksforgeeks.org/css-text-indent-property
https://www.geeksforgeeks.org/css-text-justify-property
https://www.geeksforgeeks.org/css-text-overflow-property
https://www.geeksforgeeks.org/css-text-transform-property
https://www.geeksforgeeks.org/css-text-shadow-property
https://www.geeksforgeeks.org/css-letter-spacing-property
https://www.geeksforgeeks.org/css-line-height-property
https://www.geeksforgeeks.org/css-direction-property
https://www.geeksforgeeks.org/css-word-spacing-property

45

Syntax:

 border: table_width table_color;

2. Border Collapse

The border-collapse property controls whether the borders of adjacent cells are merged into a single border

or kept separate.

Syntax:

border-collapse: collapse/separate;

3. Border Spacing

Border Spacing property specifies the distance between the borders of adjacent cells when border-collapse

is set to separate.

Syntax:

border-spacing: value;

4. Caption Side

Caption Side property specifies the placement of the table caption relative to the table.

Syntax:

caption-side: top/bottom;

5. Empty cells

Empty cells property specifies whether or not to display borders and background on empty cells in a table.

Syntax:

empty-cells:show/hide;

CSS Box Model

The CSS Box Model is very important to understand how elements are structured, styled, and spaced on a

webpage. By understanding the Box Model, developers can create attractive layouts that adapt seamlessly to

various screen sizes and devices.

What is the CSS Box Model?

https://www.geeksforgeeks.org/css-border-collapse-property/
https://www.geeksforgeeks.org/css-border-spacing-property/
https://www.geeksforgeeks.org/css-caption-side-property/
https://www.geeksforgeeks.org/css-empty-cells-property/

46

The CSS Box Model is a layout model that describes how different components of a web element (content,

padding, border, and margin) are structured and positioned. Each web element generates a rectangular

box that encompasses these components, and the Box Model allows developers to control the element’s size

and spacing effectively.

Key Components of the Box Model

The CSS Box Model consists of four primary components:

1. Content Area

• The content area is where the actual content, such as text, images, or other media, is displayed.

• It is sized using the width and height properties.

• The boundary of the content area is known as the content edge.

2. Padding Area

• The padding surrounds the content area and creates space inside the border.

• It can be adjusted using the padding property (or padding-top, padding-right, padding-bottom, and

padding-left for individual sides).

• The padding area increases the overall size of the element without changing the content area.

3. Border Area

• The border wraps around the padding and content, defining the edge of the element.

• It can be styled using properties such as border width border color, border style, and border-color.

• The width of the border affects the overall size of the element.

4. Margin Area

• The margin is the outermost space that separates the element from adjacent elements.

• It can be set using the margin property (or margin-top, margin-right, margin-bottom, and margin-left for

individual sides).

• Unlike padding and bordborderse margin does not increase the element’s total size but affects its

placement on the page.

The following figure illustrates the Box model in CSS.

47

 Version Control

What Is Git Version Control?

In software development, keeping track of changes, managing multiple versions of code, and collaborating

seamlessly across teams is very important. This is where version control systems (VCS) come into play, and

Git is one of the most popular version control systems used today.

Whether you're working on a personal project or part of a large-scale development team, Git helps you

manage your codebase effectively, ensuring that changes are tracked, versions are maintained, and

collaboration is smooth.

What is Version Control?

Before diving into Git, it’s important to understand the concept of version control. In simple terms, version

control is a system that tracks changes made to files over time. It allows developers to:

• Save and track changes: Every modification made to the codebase is recorded.

• Revert to previous versions: If something breaks or a feature doesn’t work as expected, you can revert

to a stable version.

• Collaborate: Multiple developers can work on the same project without overwriting each other’s work.

• Branching and Merging: Developers can create branches for different features, work on them

independently, and merge them back to the main codebase when ready.

Git is a powerful version control system widely used for tracking changes in source code during software

development. Created by Linus Torvalds in 2005, Git has become an essential tool for developers

worldwide. Understanding Git can significantly enhance your coding efficiency and collaboration.

What is Git?

Git is a distributed version control system (DVCS) that allows developers to track changes in their

codebase, collaborate with others, and manage different versions of their projects efficiently

• Git was developed by Linus Torvalds in 2005 for Linux kernel development.

• Git is 2.45.1 is the Lastest Verions of GIT, released on May 2024.

Why Use Git?

1. Version Control: Git helps in tracking changes, allowing you to revert to previous states if something

goes wrong.

2. Collaboration: It enables multiple developers to work on a project simultaneously without interfering

with each other’s work.

3. Backup: Your entire project history is saved in a Git repository, providing a backup of all versions.

4. Branching and Merging: Git’s branching model allows you to experiment with new features or bug

fixes independently from the main project.

5. Open Source Projects: Most open source projects use Git for version control. Learning Git allows you

to contribute to these projects.

6. Industry Standard: Git is widely used in the software industry, making it an essential skill for

developers.

Working with Git

1. Initializing a Repository: When you initialize a folder with Git, it becomes a repository. Git logs all

changes made to a hidden folder within that repository.

48

2. Staging Changes: Git marks modified files as “staged.” Staging prepares changes for a snapshot you

want to keep.

3. Committing Changes: Once staged changes are satisfactory, commit them. Git maintains a complete

record of each commit.

What is Github?

GitHub, a hosting service for Git repositories, allows you to access and download projects from any

computer. Here’s what you can do with GitHub:

1. Store Repositories: GitHub hosts your repositories.

2. Collaborate: Work with other developers from any location.

3. Version Control: Manage collaborative workflows using Git and GitHub.

Various Approaches To Use Git For Version Control

Approach 1: Git via Command Line

This is the most common method where developers use terminal commands to interact with Git. By utilizing

git through command prompt, one has exhaustive authority over git functions.

Step 1: Install Git.

1. Download and install Git from the official website : Git Downloads.

2. After Installation, verify Git by running the following command in your terminal.

 git --version

Step 2: Initialize a Git Repository

1. Navigate to your project folder in the terminal.

2. Initialize Git in the project folder by running:

git init

This creates a hidden .git folder that tracks your project.

Step 3: Staging Changes

To start tracking files, you need to stage them. This moves the files into a "staging area" before committing

them:

git add <file-name>

or to add all files:

git add .

Step 4: Committing Changes

After staging, commit your changes with a message describing what you have done:

git commit -m "Initial commit"

Step 5: Viewing Commit History

You can view the history of commits using:

git log

Step 6: Creating and working with Branches

Create a new branch for a feature or experiment:

git checkout -b <branch-name>

Switch back to the main branch:

git checkout main

Step 7: Pushing to a Remote Repository

To collaborate with others, push your changes to a remote repository like GitHub:

git remote add origin <repository-URL>

git push -u origin main

Approach 2: Git with GUI Clients

49

Many Git GUI clients provide a visual interface to work with Git repositories. Examples include GitHub

Desktop, Sourcetree, and GitKraken. Using a GUI client is much more user-friendly because it has a

graphical interface for executing Git operations.

Step 1: Install a Git GUI/Client.

Get and Install a Git GUI Client (example, GitHub Desktop, Sourcetree, GitKraken Desktop).

Step 2: Clone or Create a Repository

Launch the client program and create an image repository or clone from one on GitHub.

Step 3: Stage and Commit Changes

Files can be added to the staging area by dragging them over or using buttons in the GUI to commit

changes.

Step 4: Push to Remote

Once your changes are committed, select push and this will upload the modified file(s) back to GitHub or

any other remote location selected.

Approach 3: Git in Integrated Development Environments (IDEs)

Popular IDEs like Visual Studio Code, IntelliJ IDEA, and PyCharm have built-in Git support, allowing you

to perform Git operations from within the editor.

Step 1: Configure Git in the IDE

Start your IDE and switch on the built-in Git functionality (if not enabled by default) within its

configuration parameters.

Step 2: Cloning or initializing repository

Use the graphical user interface options to either clone an existing repository or to initialize a new one using

the option available on GUI itself.

Step 3: Use stage/commit/push

With this approach one can stage, commit and push changes to remotes via their visual inerface without

need for command line interaction at all.

Branching strategies In Git

Branches are independent lines of work, stemming from the original codebase. Developers create separate

branches for independently working on features so that changes from other developers don't interfere with an

individual's line of work. Developers can easily pull changes from different branches and also merge their code

with the main branch. This allows easier collaboration for developers working on one codebase.

Git branching strategies are essential for efficient code management and collaboration within development teams.

In this comprehensive guide, we will delve into the various Git branching strategies, their benefits,

implementation steps, and best practices.

Key Terminologies

• Git Branch: A parallel version of the code within a Git repository, allowing for separate development and

experimentation.

• Main Branch (formerly Master Branch): The primary branch of a Git repository where the production-

ready code resides.

• Feature Branch: A branch created to work on a specific feature or task isolated from the main branch.

• Merge: The process of combining changes from one branch into another.

• Pull Request (PR): A request made by a developer to merge their changes into another branch, often used

for code review.

https://www.geeksforgeeks.org/github-desktop/
https://www.geeksforgeeks.org/github-desktop/
https://www.geeksforgeeks.org/how-to-install-sourcetree-for-git-in-windows/
https://www.geeksforgeeks.org/what-is-a-git-repository/

50

• CI/CD Pipeline: Continuous Integration and Continuous Deployment pipeline, automating the process of

building, testing, and deploying code changes.

What Is A Branching Strategy?

A branching strategy is a strategy that software development teams adopt for writing, merging and deploying code

with the help of a version control system like Git. It lays down a set of rules that aid the developers on how to go

about the development process and interact with a shared codebase. Strategies like these are essential as they help

in keeping project repositories organized, error free and avoid the dreaded merge conflicts when multiple

developers simultaneously push and pull code from the same repository.

Encountering merge conflicts can impede the swift delivery of code, thereby obstructing the establishment and

upkeep of an efficient DevOps workflow. DevOps aims to facilitate a rapid process for releasing incremental code

changes. Therefore, implementing a structured branching strategy can alleviate this challenge, enabling developers

to collaborate seamlessly and minimize conflicts. This approach fosters parallel workstreams within teams,

promoting quicker releases and reduced likelihood of conflicts through a well-defined process for source control

modifications.

The Branching strategies provides following features:

• Parallel development

• Enhanced productivity due to efficient collaboration

• Organized and structured feature releases

• Clear path for software development process

• Bug-free environment without disrupting development workflow

Step By Step Implementation Of Creating A Branch

The following are the steps for creating a branch:

Step 1: Create Branch

• Create a branch with the name you want to specify, here we are naming the branch name as "new-feature".

git branch new-feature

Step 2: Navigate to Branch

• Now navigate to the new feature branch from the current branch with the following command:

git checkout new-feature

(or)

Step 3: Creating And Navigating Branch At A Time

• The following one command only helps in creating the branch and navigating to the branch.

git checkout -b new-feature

Step 4: Check Current Branch

• Execute the following command to check the current branch that you're on.

git branch

Step 5: Delete a Branch

Ensure you are present on the branch you want to delete.

git branch -d <branch-to-delete>

Common Git Branching Strategies

The following are the common git branching strategies:

Gitflow Workflow

GitFlow enables parallel development, where developers can work separately on feature branches, where a feature

branch is created from a master branch. After completion of changes, the feature branch is merged with the master

branch.

The types of branches that can be present in GitFlow are:

• Master - Used for product release

• Develop - Used for ongoing development

https://www.geeksforgeeks.org/ci-cd-continuous-integration-and-continuous-delivery/
https://www.geeksforgeeks.org/git-merge-and-merge-conflict/
https://www.geeksforgeeks.org/how-devops-works/
https://www.geeksforgeeks.org/git-flow-vs-github-flow/
https://www.geeksforgeeks.org/git-origin-master/

51

• Feature Branching - branches off the develop branch to develop new features.

• Release - Assist in preparing a new production release and bug fixing, typically branched from the develop

branch, and necessitating merges back into both develop and master branches.

• Hotfix - Hotfix branches aid in addressing discovered bugs swiftly, allowing developers to continue their

work on the develop branch while the issue is resolved. Unlike release branches, hotfix branches are created from

master branch specifically for critical bug resolution in the production release.

The Master and Develop branches are the main branches, and persist throughout the journey of the software. The

other branches are essentially supporting branches and are short-lived.

Pros Of Gitflow

• Facilitates parallel development, ensuring production code stability while developers work on separate

branches.

• Organizes work effectively with separate branches for specific purposes.

• Ideal for managing multiple versions of production code.

• GitFlow streamlines the release management process, expediting the rollout of new features and bug fixes.

• By advocating for feature-based development through individual branches, GitFlow fosters independent

feature implementation. This approach allows seamless merging of features into the main codebase, minimizing

conflicts.

• GitFlow offers a well-defined procedure for addressing bugs and deploying hotfixes, facilitating their rapid

integration into production environments.

Cons Of Gitflow

• Complexity increases as more branches are added, potentially leading to difficulties in management.

• Merging changes from development branches to the main branch requires multiple steps, increasing the

chance of errors and merge conflicts.

• Debugging issues becomes challenging due to the extensive commit history.

• GitFlow's complexity may slow down the development process and release cycle, making it less suitable

for continuous integration and continuous delivery.

https://www.geeksforgeeks.org/git-changing-history/

52

GitHub Flow

GitHub flow is a simpler alternative to GitFlow, idea for smaller teams. GitHub flow only has feature branches

that stem directly from the master branch and are merged back to master after completing changes. They don't

have release branches. The fundamental concept of this model revolves around maintaining the master code in a

consistently deployable condition, thereby enabling the seamless implementation of faster release cycles,

continuous integration and continuous delivery workflows.

The types of branches that can be present in GitFlow are:

• Master - The GitHub Flow workflow initiates with the master branch, housing the most recent stable code

prepared for release.

Feature - Developers initiate feature branches from the main branch to implement new features or address

bugs. Upon completion, the feature branch is merged back into the main branch. If a merge conflict arises,

developers are required to resolve it prior to finalizing the merge.

Pros Of Github Flow

• GitHub Flow emphasizes fast and streamlined branching, short production cycles, and frequent releases,

aligning well with Agile methodologies.

• Teams can quickly identify and resolve issues due to the strategy's focus on fast feedback loops.

• Testing and automating changes to a single branch enable quick and continuous deployment.

• GitHub Flow is particularly well-suited for small teams and web applications, where maintaining a single

production version is sufficient.

Cons Of Github Flow

• GitHub Flow is not ideal for managing multiple versions of the codebase.

• The lack of development branches can lead to unstable production code if changes are not properly tested

before merging.

• Without separate development branches, the master branch can become cluttered, serving both production

and development purposes.

• As teams grow, merge conflicts may occur more frequently due to everyone merging changes to the same

branch. Lack of transparency can exacerbate this issue, as developers may not see what others are working on.

https://www.geeksforgeeks.org/introduction-to-github/
https://www.geeksforgeeks.org/merge-conflicts-and-how-to-handle-them/

53

GitLab Flow

GitLab flow is also an alternative to GitFlow, designed to be more robust and scalable than GitHub Flow.

Designed for teams using GitLab, a web-based Git repository manager, this approach streamlines development by

concentrating on a solitary, protected branch, usually the master branch. Continuous integration and automated

testing form the core elements of GitLab Flow, guaranteeing the stability of the master branch.

The types of branches that can be present in GitFlow are:

• Master: Main production branch housing stable release ready code.

• Develop: Contains new features and bug fixes.

• Feature: Developers initiate feature branches from the develop branch to implement new features or

address bugs. Upon completion, they integrate the changes from the feature branch into the develop branch.

• Release: Prior to a new release, a release branch is branched off from the develop branch. This release

branch serves as a staging area for integrating new features and bug fixes intended for the upcoming release. Upon

completion, developers merge the changes from the release branch into both the develop and main branches.

Pros Of Gitlab Flow

• GitLab Flow offers a robust and scalable Git branching strategy, particularly suitable for larger teams and

projects.

• This approach ensures a distinct separation between code under development and production-ready code,

minimizing the risk of inadvertent changes to the production code.

• With GitLab Flow, each feature is developed in its own branch, promoting independent development and

reducing conflicts during integration into the main codebase.

• The use of separate branches enables developers to work concurrently on different features, leading to

quicker feature development.

Cons Of Github Flow

• GitLab Flow may pose challenges due to its complexity, particularly for teams new to Git.

• Merging feature branches into the develop branch can result in conflicts, as these branches may diverge

from the develop branch over time.

https://www.geeksforgeeks.org/bitbucket-vs-github-vs-gitlab/
https://www.geeksforgeeks.org/introduction-to-github/

54

• The GitLab Flow strategy may slow down development, as it necessitates merging changes into the

develop branch before release. This could be problematic for teams requiring rapid release of new features and

bug fixes.

Trunk Based Development

It is a branching strategy where developers work on a single "trunk" branch, mostly the master branch and

use feature flags to isolate features until they are ready for release. This main branch should be ready for

release any time. No additional branches are created. The main idea behind this strategy is to make smaller

changes more frequently to avoid merge conflicts and the goal is to limit long-lasting branches. This

strategy enables continuous integration and delivery, making it an attractive choice for teams aiming to

release updates swiftly and frequently. It is particularly well-suited for smaller projects or teams seeking a

streamlined workflow.

Pros Of Trunk Based Development

• Trunk-based development keeps the trunk consistently updated, enabling continuous integration of code

changes.

• Developers have better visibility into each other's changes as commits are made directly to the trunk,

promoting collaboration and transparency.

• Without the need for branches, there is less likelihood of encountering merge conflicts or "merge hell," as

developers push small changes more frequently, simplifying conflict resolution.

• The shared trunk remains in a constant releasable state, allowing for faster and more stable releases due to

the continuous integration of work.

Cons Of Trunk Based Development

• Trunk-based development requires a significant amount of autonomy and may be daunting for less

experienced developers who interact directly with the shared trunk, hence it is suitable for senior developers.

• Trunk-based development demands a considerable level of discipline and effective communication among

developers to prevent conflicts and ensure proper isolation of new features.

• Difficult to manage for large teams.

• Maintaining backward compatibility with older releases can also pose challenges.

Picking The Right Branching Strategy

Git offers a wide range of branching strategies, each suited to different project requirements and team dynamics.

For beginners, starting with simpler approaches like GitHub Flow or Trunk-based development is recommended,

gradually advancing to more complex strategies as needed. Feature flagging can also help reduce the necessity for

excessive branching. GitFlow is beneficial for projects requiring strict access control, particularly in open-source

environments. However, it may not align well with DevOps practices. Therefore, teams seeking an Agile DevOps

workflow with strong support for continuous integration and delivery may find GitHub Flow or Trunk-based

development more suitable. Ultimately, the choice of branching strategy depends on the specific needs and goals

of the project and team.

Product Type Team Size Applicable Strategy

Continuous Deployment and Release Small GitHub Flow and TBD

Scheduled and Periodic Version Release Medium GitFlow and GitLab Flow

Continuous deployment for quality-focused products Medium GitLab Flow

https://www.geeksforgeeks.org/merge-conflicts-and-how-to-handle-them/
https://www.geeksforgeeks.org/trunk-based-development-in-software-development/
https://www.geeksforgeeks.org/software-engineering-agile-software-development/
https://www.geeksforgeeks.org/what-is-continuous-integration/

55

Product Type Team Size Applicable Strategy

Products with long maintenance cycles Large GitFlow

Git Merging

Git is an important tool that helps developers manage changes to their codebase. One of the most critical

and frequently used commands in Git is merge. Merging allows you to integrate changes from different

branches into a single branch, ensuring that all updates are consolidated. In this article, we will see more

about git merge command, its syntax, uses, and provide examples to help you understand how to effectively

use it in your projects.

What is Git Merge?

git merge is a command used to combine the changes from one or more branches into the current branch. It

integrates the history of these branches, ensuring that all changes are included and conflicts are resolved.

Syntax:

git merge <branch-name>

Uses of Git Merge
• To incorporate changes from another branch into the current branch.

• To consolidate development work done in different branches.

• To bring feature branches into the main branch (e.g., main or master).

How Does Git Merge Work?

The concept of git merging is basically to merge multiple sequences of commits, stored in multiple branches

in a unified history, or to be simple you can say in a single branch.

What happens is when we try to merge two branches, git takes two commit pointers and starts searching for

a common base commit in those two specified bit branches. When git finds the common base commit it

simply creates a “merge commit” automatically and merges each queued merge commit sequence. There is a

proper merging algorithm in git, with the help of which git performs all of these operations and presents

conflicts if there are any.

https://www.geeksforgeeks.org/introduction-to-git-branch

56

In our case, we have two branches one is the default branch called “main” and the other branch named

“dev” and this is how our git repo looks before merging. Here git finds the common base, creates a new

merge commit, and merged them.

A git merge operation is performed by running the below command. When we perform merging, git always

merges with the current branch from where we are performing the operation(in our case it is “main”). By

this, the branch being merged is not affected.

 "git merge <name of the branch to be merged (in our case it is "dev")>".

57

Merging Types

In Git, there are two primary types of merging. There are.

1. Fast-forward merging.

2. Three-way merging.

1. Fast-Forward Merging
Fast forward merge happens when the tip of the current branch (“dev” in our case) is a direct ancestor of the

target branch (“main” in our case). Here instead of actually merging the two branches git simply moves the

current branch tip up to the target branch tip. Fast-forward merge is not possible if the branches have

diverged. Then we need a 3-way merge which uses a dedicated commit to merge two histories or you can

say branches.

2. Three-Way Merging
When the base branch has changed since the branch was first created, this kind of merging takes place. Git

in this situation generates a fresh merging commit that incorporates the modifications from both branches.

Git compares the modifications made to both branches with those made to the base branch using a three-way

merge process. Following that, it integrates both sets of changes into a single new commit.

Git also supports some other types of merging like recursive and octopus margin. With the help of a single

merge commit “octopus merging” can merge multiple branches at once. “Recursive merging” is similar to

three-way merging but it can handle some more complex merge operations than the three-way merging.

Steps To Merge a Branch

To ensure that the merging process goes smoothly we need to follow a series of steps for merging which

involves resolving any conflicts that we may face. Below are the basic steps involved.

58

Step 1: Creating a new branch.

Create a new branch from the remote repository branch which you want to merge. If errors are faced while

merging we can go back to the previous version immediately.

Step 2: Make sure always latest changes are pulled.

Always make sure before merging the latest changes that the latest changes are pulled from both branches

like the master and the branch you want to merge.

Step 3: Resolving the merge conflicts.

While merging the branches it is possible that some merge conflicts will be raised then git will prompt you

to resolve the merge conflicts. If any merge conflicts are not raised then git will automatically merge the

branches.

Step 4: Merged code needs to be tested.

It is essential to test the merged code and we have to make sure that the code doesn’t have any bugs and it is

working properly. To test the code we do it automatically or manually.

Step 5: Commit the merged code.

Once completing of merging the code if you are satisfied with the work, Know it’s time to commit the new

changes of code into the new branch.

Step 6: Push the merged branch.

Lastly, make the new branch accessible to other team members by pushing it to the repository.

In conclusion, pulling the most recent changes, resolving conflicts, testing the merged code, committing the

changes, and pushing the new branch are the essential phases in the Git merge preparation process. The

merging procedure in Git can be streamlined and effective with careful planning and attention to detail.

How To Resolve Merge Conflicts?

While merging the two branches if changes are made to two different branches then git will not merge

automatically it prompts the user to resolve the merge conflicts manually. Below are the steps to resolve the

merge conflicts in git:

Step 1: Identify the conflict files.

Git will automatically display a message by indicating the file to be resolved from merge conflicts. You

have to resolve the conflicts manually.

Step 2: Open the conflict files.

Open the merge conflict files by using editors whatever you are convenient with like (IDE). After opening

we can conflict markers as shown below it will indicate where the conflicts are located.

Conflict markers

(<<<<<<<, =======, and >>>>>>>)

Step 3: Resolve the conflicts.

Remove the unnecessary changes after examining them carefully and keep the changes that are more

important.

Step 4: Moving to the staging.

Use the git add command to add the updated files to the staging area after the conflicts have been resolved.

Step 5: Commit and Push the changes

After resolving conflicts commit the changes by using the below command.Including the message which

gives information about changes made while resolving the conflicts.

git commit -m "message"

Push the changes made to the remote repository by using. Below command.

git push

Where other developers can access the code. And perform any changes that are required.

https://www.geeksforgeeks.org/merge-conflicts-and-how-to-handle-them
https://ide.geeksforgeeks.org/
https://www.geeksforgeeks.org/what-is-git-commit
https://www.geeksforgeeks.org/what-is-git-push
https://www.geeksforgeeks.org/working-with-git-repositories

59

After resolving the conflicts, it is crucial to carefully analyze and test the merged code to make sure that the

modifications are functioning as intended and that no new problems have been introduced. These procedures

can help developers resolve merge disputes in Git and maintain a dependable and stable codebase.

60

UNIT - II

JavaScript and jQuery: JavaScript basics, Functions, form validation, OOPS Aspects of JavaScript,

JQuery Framework, jQuery events, AJAX for data exchange with server, JSON data format.

JavaScript is a general-purpose, prototype-based, object-oriented scripting language. It is designed to be

embedded in diverse applications and systems, without consuming much memory. JavaScript borrows most of

its syntax from Java, but also inherits from Awk and Perl, with some indirect influence from Self in its object

prototype system.

JavaScript is dynamically typed, that is, programs do not declare variable types, and the type of a variable is

unrestricted and can change at runtime. Source code can be generated at runtime and evaluated against an

arbitrary scope. Typical implementations compile by translating source into an unspecified bytecode format, to

check syntax and source consistency. Note that the ability to generate and interpret programs at runtime

implies the presence of a compiler at runtime.

JavaScript is a high-level scripting language that does not depend on or expose particular machine

representations or operating system services.

 It provides automatic storage management, typically using a garbage collector.

 The language has the standard objects and functions .

Edition Date published Name Changes from prior edition Editor

1 June 1997
First edition based on JavaScript 1.1 as

implemented in Netscape Navigator

3.0.[1]

Guy L. Steele Jr.

2 June 1998
Editorial changes to keep the

specification fully aligned with

ISO/IEC 16262:1998.

Mike Cowlishaw

3 December 1999

Based on JavaScript 1.2 as implemented

in Netscape Navigator

4.0.[2] Added regular expressions, better

string handling, new control statements,

try/catch exception handling, tighter

definition of errors, formatting for

numeric output, and other enhancements

Mike Cowlishaw

4

Abandoned (last

draft 30 June

2003)

ECMAScript

4 (ES4)

Fourth Edition was abandoned, due to

political differences concerning language

complexity. Many features proposed for

the Fourth Edition have been completely

dropped; some were incorporated into

the sixth edition.

https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-1
https://en.wikipedia.org/wiki/Guy_L._Steele_Jr.
https://en.wikipedia.org/wiki/Mike_Cowlishaw
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-2
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Mike_Cowlishaw

61

5 December 2009

Adds "strict mode", a subset intended to

provide more thorough error checking

and avoid error-prone constructs.

Clarifies many ambiguities in the 3rd

edition specification, and accommodates

behavior of real-world implementations

that differed consistently from that

specification. Adds some new features,

such as getters and setters, library

support for JSON, and more

complete reflection on object

properties.[3]

Pratap Lakshman,

Allen Wirfs-Brock

5.1 June 2011 Changes to keep the specification fully

aligned with ISO/IEC 16262:2011.

Pratap Lakshman,

Allen Wirfs-Brock

6 June 2015[4]

ECMAScript

2015

(ES2015)

See #6th Edition – ECMAScript 2015 Allen Wirfs-Brock

7 June 2016[5]

ECMAScript

2016

(ES2016)

See #7th Edition – ECMAScript 2016 Brian Terlson

8 June 2017[6]

ECMAScript

2017

(ES2017)

See #8th Edition – ECMAScript 2017 Brian Terlson

9 June 2018[7]

ECMAScript

2018

(ES2018)

See #9th Edition – ECMAScript 2018 Brian Terlson

10 June 2019[8]

ECMAScript

2019

(ES2019)

See #10th Edition – ECMAScript 2019
Brian Terlson, Bradley

Farias, Jordan Harband

11 June 2020[9]

ECMAScript

2020

(ES2020)

See #11th Edition – ECMAScript 2020
Jordan Harband, Kevin

Smith

12 June 2021[10]

ECMAScript

2021

(ES2021)

See #12th Edition – ECMAScript 2021

Jordan Harband, Shu-

yu Guo, Michael

Ficarra, Kevin Gibbons

13 June 2022[11]

ECMAScript

2022

(ES2022)

See #13th Edition – ECMAScript 2022
Shu-yu Guo, Michael

Ficarra, Kevin Gibbons

14 June 2023[12]

ECMAScript

2023

(ES2023)

See #14th Edition – ECMAScript 2023
Shu-yu Guo, Michael

Ficarra, Kevin Gibbons

https://en.wikipedia.org/wiki/Mutator_method
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Reflective_programming
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-3
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2015-4
https://en.wikipedia.org/wiki/ECMAScript_version_history#6th_Edition_%E2%80%93_ECMAScript_2015
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2016-5
https://en.wikipedia.org/wiki/ECMAScript_version_history#7th_Edition_%E2%80%93_ECMAScript_2016
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2017-6
https://en.wikipedia.org/wiki/ECMAScript_version_history#8th_Edition_%E2%80%93_ECMAScript_2017
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2018-7
https://en.wikipedia.org/wiki/ECMAScript_version_history#9th_Edition_%E2%80%93_ECMAScript_2018
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2019-8
https://en.wikipedia.org/wiki/ECMAScript_version_history#10th_Edition_%E2%80%93_ECMAScript_2019
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2020-9
https://en.wikipedia.org/wiki/ECMAScript_version_history#11th_Edition_%E2%80%93_ECMAScript_2020
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2021-10
https://en.wikipedia.org/wiki/ECMAScript_version_history#12th_Edition_%E2%80%93_ECMAScript_2021
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-ES2022-11
https://en.wikipedia.org/wiki/ECMAScript_version_history#13th_Edition_%E2%80%93_ECMAScript_2022
https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-12
https://en.wikipedia.org/wiki/ECMAScript_version_history#14th_Edition_%E2%80%93_ECMAScript_2023

62

15 June 2024[13]

ECMAScript

2024

(ES2024)

See #15th Edition – ECMAScript 2024
Shu-yu Guo, Michael

Ficarra, Kevin Gibbons

16 (pending)

ECMAScript

2025

(ES2025)

Pending, see features being

considered: #ES.next
(pending)

JAVASCRIPT

JavaScript is the scripting language of the Web.

JavaScript is used in millions of Web pages to add functionality, validate forms, detect browsers, and
much more.

Introduction to JavaScript

JavaScript is used in millions of Web pages to improve the design, validate forms, detect browsers, create
cookies, and much more.

JavaScript is the most popular scripting language on the Internet, and works in all major browsers, such as
Internet Explorer, Mozilla Firefox, and Opera.

What is JavaScript?

• JavaScript was designed to add interactivity to HTML pages

• JavaScript is a scripting language

• A scripting language is a lightweight programming language

• JavaScript is usually embedded directly into HTML pages

• JavaScript is an interpreted language (means that scripts execute without preliminary compilation)

• Everyone can use JavaScript without purchasing a license

Java and JavaScript are two completely different languages in both concept and design!

Java (developed by Sun Microsystems) is a powerful and much more complex programming language - in
the same category as C and C++.

What can a JavaScript Do ?

• JavaScript gives HTML designers a programming tool - HTML authors are normally not
programmers, but JavaScript is a scripting language with a very simple syntax! Almost anyone can
put small "snippets" of code into their HTML pages

• JavaScript can put dynamic text into an HTML page - A JavaScript statement like this:

document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page

• JavaScript can react to events - A JavaScript can be set to execute when something happens,

https://en.wikipedia.org/wiki/ECMAScript_version_history#cite_note-13
https://en.wikipedia.org/wiki/ECMAScript_version_history#15th_Edition_%E2%80%93_ECMAScript_2024
https://en.wikipedia.org/wiki/ECMAScript_version_history#ES.next

63

like when a page has finished loading or when a user clicks on an HTML element

• JavaScript can read and write HTML elements - A JavaScript can read and change the content
of an HTML element

• JavaScript can be used to validate data - A JavaScript can be used to validate form data before

it is submitted to a server. This saves the server from extra processing

• JavaScript can be used to detect the visitor's browser - A JavaScript can be used to detect the

visitor's browser, and - depending on the browser - load another page specifically designed for that

browser

• JavaScript can be used to create cookies - A JavaScript can be used to store and retrieve
information on the visitor's computer.

JavaScript Variables

Variables are "containers" for storing information. JavaScript variables are used to hold values or

expressions.

A variable can have a short name, like x, or a more descriptive name, Student_name

Rules for JavaScript variable names:

• Variable names are case sensitive (y and Y are two different variables)

• Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

Example

A variable's value can change during the execution of a script. You can refer to a variable by its name to

display or change its value.

<html>

 <body>

<script type="text/javascript"> var firstname;

firstname="Welcome";

 document.write(firstname);

document.write("
");

firstname="XYZ";

document.write(firstname);
 </script>

<p>The script above declares a variable, assigns a value to it, displays the value, change the value,

and displays the value again.</p>

</body>

 </html>

Output :

Welcome
XYZ

64

 x=5;
 carname="Scorpio";

var x=5;
var carname="Scorpio";

var x=5; var
x;

The script above declares a variable, assigns a value to it, displays the value, change the value, and

displays the value again.

Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var statement:

After the declaration shown above, the variables are empty (they have no values yet). However, you can also

assign values to the variables when you declare them:

After the execution of the statements above, the variable x will hold the value 5, and carname will hold

the value Scorpio.

Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables

If you assign values to variables that have not yet been declared, the variables will automatically be
declared.

These statements:

have the same effect as:

 Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value.

var x=5;
var carname="Scorpio";

var x;
var carname;

65

y=x-5;
z=y+5
;

After the execution of the statements above, the variable x will still have the value of 5. The value of x is

not reset (or cleared) when you redeclare it.

DataTypes

• Numbers - are values that can be processed and calculated. You don't enclose them in quotation
marks. The numbers can be either positive or negative.

• Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses the string

literally; it doesn't process it. You'll use strings for text you want displayed or values you want

passed along.

• Boolean (true/false) - lets you evaluate whether a condition meets or does not meet specified

criteria.

• Null - is an empty value. null is not the same as 0 -- 0 is a real, calculable number, whereas null is

the absence of any value.

Data Types

TYPE EXAMPLE

Numbers Any number, such as 17, 21, or 54e7

Strings "Greetings!" or "Fun"

Boolean Either true or false

Null A special keyword for exactly that – the null value (that is,

nothing)

JavaScript Arithmetic

As with algebra, you can do arithmetic operations with JavaScript variables:

JavaScript Operators

The operator = is used to assign values. The operator + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

y=5;
z=2;
x=y+z;

66

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7

- Subtraction x=y-2 x=3

* Multiplication x=y*2 x=10

/ Division x=y/2 x=2.5

% Modulus (division remainder) x=y%2 x=1

++ Increment x=++y x=6

-- Decrement x=--y x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

67

txt1="What a very";
txt2="nice day";
txt3=txt1+" "+txt2;

x=5+5;
document.write(x);

x="5"+"5";
document.write(x);

x=5+"5";
document.write(x);

x="5"+5;
document.write(x);

After the execution of the statements above, the variable txt3 contains "What a very nice day". To add a

space between the two strings, insert a space into one of the strings:

or insert a space into the expression:

After the execution of the statements above, the variable txt3 contains: "What a very nice day"

Adding Strings and Numbers

Look at these examples:

The rule is:

If you add a number and a string, the result will be a string. JavaScript Comparison and Logical

Operators Comparison and Logical operators are used to test for true or false.

Comparison Operators

Comparison operators are used in logical statements to determine equality or difference between variables or

txt1="What a very ";
txt2="nice day";
txt3=txt1+txt2;

txt1="What a very";
txt2="nice day";
txt3=txt1+txt2;

68

if (age<18) document.write("Too young");

variablename=(condition)?value1:value2

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

values.

Given that x=5, the table below explains the comparison operators:

Operator Description Example

== is equal to x==8 is false

=== is exactly equal to (value and type) x===5 is true

x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

How Can it be Used

Comparison operators can be used in conditional statements to compare values and take action depending

on the result:

You will learn more about the use of conditional statements in the next chapter of this tutorial.

Logical Operators

Logical operators are used to determine the logic between variables or values. Given that x=6 and y=3, the

table below explains the logical operators:

Operator Description Example

&& and (x < 10 && y > 1) is true

|| or (x==5 || y==5) is false

! not !(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

Syntax

Example

69

if (condition)
{
code to be executed if condition is true
}

<script type="text/javascript">
//Write a "Good morning" greeting if
//the time is less than
10 var d=new Date();
var time=d.getHours();

If the variable visitor has the value of "PRES", then the variable greeting will be assigned the value

"Dear President " else it will be assigned "Dear".

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions. You can
use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

• if statement - use this statement if you want to execute some code only if a specified condition is

true

• if...else statement - use this statement if you want to execute some code if the condition is true

and another code if the condition is false
• if...else if ... else statement - use this statement if you want to select one of many blocks of code to

be executed

• switch statement - use this statement if you want to select one of many blocks of code to be
executed

If Statement

You should use the if statement if you want to execute some code only if a specified condition is true.

Syntax

Note that if is written in lowercase letters. Using uppercase letters (IF) will generate a JavaScript error!

Example 1

70

<script type="text/javascript">
//Write "Lunch-time!" if the time is 11 var
d=new Date();
var time=d.getHours();

if (time==11)
{
document.write("Lunch-time!");
}
</script>

if (condition)
{
code to be executed if condition is true
}
else
{
code to be executed if condition is not true
}

Example 2

Note: When comparing variables you must always use two equals signs next to each other (==)!

Notice that there is no ..else.. in this syntax. You just tell the code to execute some code only if the

specified condition is true.

If...else Statement

If you want to execute some code if a condition is true and another code if the condition is not true, use
the if ... else statement.

Syntax

if (time<10)
{
document.write("Good morning");
}
</script>

71

<script type="text/javascript">
//If the time is less than 10,
//you will get a "Good morning" greeting.
//Otherwise you will get a "Good day" greeting. var d = new Date();

if (condition1)
{
code to be executed if condition1 is true
}
else if (condition2)
{
code to be executed if condition2 is true
}
else
{
code to be executed if condition1 and
condition2 are not true
}

Example

If...else if...else Statement

You should use the if....else if...else statement if you want to select one of many sets of lines to execute.

Syntax

var time = d.getHours();

if (time < 10)
{
document.write("Good morning!");
}
else
{
document.write("Good day!");
}
</script>

72

<script type="text/javascript">
var d = new Date()
var time =
d.getHours() if
(time<10)
{
document.write("Good morning");
}
else if (time>10 && time<16)
{
document.write("Good day");
}
else

Example

{
document.write("Hello World!");
}
</script>

73

<script type="text/javascript">
//You will receive a different greeting based
//on what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, etc.
var d=new Date();
theDay=d.getDay();
switch (theDay)
{
case 5:
document.write("Finally Friday");
break;

case 6:
document.write("Super Saturday");
break;

case 0:
document.write("Sleepy Sunday");

The JavaScript Switch Statement

You should use the switch statement if you want to select one of many blocks of code to be executed.

74

switch(n)
{
case 1:
execute code block 1
break;

case 2:
execute code block 2
break;

default:
code to be executed if n is
different from case 1 and 2

}

Syntax

This is how it works: First we have a single expression n (most often a variable), that is evaluated once.

The value of the expression is then compared with the values for each case in the structure. If there is a

match, the block of code associated with that case is executed. case break to prevent the code from

running into the next case automatically.

Example

JavaScript Controlling(Looping) Statements

Loops in JavaScript are used to execute the same block of code a specified number of times or
while a specified condition is true.

JavaScript Loops

Very often when you write code, you want the same block of code to run over and over again in a row.

Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript there are two different kind of loops:

• for - loops through a block of code a specified number of times

• while - loops through a block of code while a specified condition is true

break;
default:
document.write("I'm looking forward to this weekend!");

}
</script>

75

for (var=startvalue;var<=endvalue;var=var+increment)
{

code to be executed
}

<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{

The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax

Example

Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long

as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing statement.

76

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is
10

while (var<=endvalue)
{

code to be executed
}

<html>

Result

JavaScript While Loop

Loops in JavaScript are used to execute the same block of code a specified number of times or

while a specified condition is true.

The while loop

The while loop is used when you want the loop to execute and continue executing while the specified

condition is true.

Note: The <= could be any comparing statement.

Example

Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as
long as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

document.write("The number is " +
i); document.write("
");
}
</script>
</body>
</html>

77

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is
10

do
{

code to be executed
}
while (var<=endvalue);

<html>
<body>
<script type="text/javascript">

Result

The do...while Loop

The do...while loop is a variant of the while loop. This loop will always execute a block of code

ONCE, and then it will repeat the loop as long as the specified condition is true. This loop will always

be executed at least once, even if the condition is false, because the code is executed before the

condition is tested.

Example

<body>
<script type="text/javascript">
var i=0;
while (i<=10)
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
</script>
</body>
</html>

78

The number is 0

Result

JavaScript Break and Continue

There are two special statements that can be used inside loops: break and continue.

JavaScript break and continue Statements

There are two special statements that can be used inside loops: break and continue.

Break

The break command will break the loop and continue executing the code that follows after the loop
(if any).

Example

var
i=0; do
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
while (i<0);
</script>
</body>
</html>

79

<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{
if (i==3)
{
break;
}
document.write("The number is " + i);
document.write("
");
}
</script>
</body>

The number is 0
The number is 1
The number is 2

Result

Continue

The continue command will break the current loop and continue with the next value.

</html>

80

<html>
<body>
<script type="text/javascript"> var
i=0
for (i=0;i<=10;i++)
{
if (i==3)
{
continue;
}
document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

The number is 0
The number is 1
The number is 2
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is
10

Example

Result

JavaScript Functions

A function (also known as a method) is a self-contained piece of code that performs a particular

"function". You can recognise a function by its format - it's a piece of descriptive text, followed by open

and close brackets. A function is a reusable code-block that will be executed by an event, or when the

function is called. To keep the browser from executing a script when the page loads, you can put your

script into a function. A function contains code that will be executed by an event or by a call to that

function.

You may call a function from anywhere within the page (or even from other pages if the function is
embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of a document. However, to

81

<html>
<head>
<script type="text/javascript">
function displaymessage()
{
alert("Hello World!");
}
</script>
</head>
<body>
<form>
<input type="button" value="Click me!"
onclick="displaymessage()" >
</form>
</body>
</html>

function functionname(var1,var2,...,varX)
{
some code
}

assure that the function is read/loaded by the browser before it is called, it could be wise to put it in

the <head> section.

Example

If the line: alert("Hello world!!") in the example above had not been put within a function, it would have

been executed as soon as the line was loaded. Now, the script is not executed before the user hits the

button. We have added an onClick event to the button that will execute the function displaymessage()

when the button is clicked.

You will learn more about JavaScript events in the JS Events chapter.

How to Define a Function

The syntax for creating a function is:

var1, var2, etc are variables or values passed into the function. The { and the } defines the start and end

of the function.

82

function functionname()
{
some code
}

function prod(a,b)
{
x=a*b;
return x;
}

product=prod(2,3);

Note: A function with no parameters must include the parentheses () after the function name:

Note: Do not forget about the importance of capitals in JavaScript! The word function must be written

in lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a function with the

exact same capitals as in the function name.

The return Statement

The return statement is used to specify the value that is returned from the function. So, functions that are

going to return a value must use the return statement.

Example

The function below should return the product of two numbers (a and b):

When you call the function above, you must pass along two parameters:

The returned value from the prod() function is 6, and it will be stored in the variable called product.

The Lifetime of JavaScript Variables

When you declare a variable within a function, the variable can only be accessed within that function.

When you exit the function, the variable is destroyed. These variables are called local variables. You

can have local variables with the same name in different functions, because each is recognized only by

the function in which it is declared.

If you declare a variable outside a function, all the functions on your page can access it. The lifetime

of these variables starts when they are declared, and ends when the page is closed.

What is an Event?

Event Handlers

Event Handlers are JavaScript methods, i.e. functions of objects, that allow us as JavaScript

programmers to control what happens when events occur.

83

Directly or indirectly, an Event is always the result of something a user does. For example, we've

already seen Event Handlers like onClick and onMouseOver that respond to mouse actions. Another

type of Event, an internal change-of-state to the page (completion of loading or leaving the page). An

onLoad Event can be considered an indirect result of a user action.

Although we often refer to Events and Event Handlers interchangeably, it's important to keep in mind

the distinction between them. An Event is merely something that happens - something that it is initiated

by an Event Handler (onClick, onMouseOver, etc...).

The elements on a page which can trigger events are known as "targets" or "target elements," and we

can easily understand how a button which triggers a Click event is a target element for this event.

Typically, events are defined through the use of Event Handlers, which are bits of script that tell the

browser what to do when a particular event occurs at a particular target. These Event Handlers are

commonly written as attributes of the target element's HTML tag.

The Event Handler for a Click event at a form field button element is quite simple to understand:

<INPUT TYPE="button" NAME="click1" VALUE="Click me for fun!"

onClick="event_handler_code">

The event_handler_code portion of this example is any valid JavaScript and it will be executed when

the specified event is triggered at this target element. This particular topic will be continued in

Incorporating JavaScripts into your HTML pages.

There are "three different ways" that Event Handlers can be used to trigger Events or Functions.

Method 1 (Link Events):

Places an Event Handler as an attribute within an tag, like this:

 ...

You can use an Event Handler located within an tag to make either an image or a text link

respond to a mouseover Event. Just enclose the image or text string between the and the

 tags.

Whenever a user clicks on a link, or moves her cursor over one, JavaScript is sent a Link Event. One

Link Event is called onClick, and it gets sent whenever someone clicks on a link. Another link event is

called onMouseOver. This one gets sent when someone moves the cursor over the link.

You can use these events to affect what the user sees on a page. Here's an example of how to use link
events. Try it out, View Source, and we'll go over it.

<A HREF="javascript:void('')"

onClick="open('index.htm', 'links', 'height=200,width=200');">How to Use Link Events

The first interesting thing is that there are no <SCRIPT> tags. That's because anything that appears in

the quotes of an onClick or an onMouseOver is automatically interpreted as JavaScript. In fact,

because semicolons mark the end of statements allowing you to write entire JavaScripts in one line, you

can fit an entire JavaScript program between the quotes of an onClick. It'd be ugly, but you could do it.

Here are the three lines of interest:

84

1. Click on me!

2. <A HREF="javascript:void('')" onClick="alert('Ooo, do it
again!');"> Click on me!

3. Click on me!

In the first example we have a normal <A> tag, but it has the magic onClick="" element, which

says, "When someone clicks on this link, run the little bit of JavaScript between my quotes." Notice,

there's even a terminating semicolon at the end of the alert. Question: is this required? NO.

Let's go over each line:

1. HREF="#" tells the browser to look for the anchor #, but there is no anchor "#", so the

browser reloads the page and goes to top of the page since it couldn't find the anchor.

2. <A HREF="javascript:void('')" tells the browser not to go anywhere - it "deadens" the link

when you click on it. HREF="javascript: is the way to call a function when a link (hyperlink or

an HREFed image) is clicked.

3. HREF="javascript:alert('Ooo, do it again!')" here we kill two birds with one stone. The default

behavior of a hyperlink is to click on it. By clicking on the link we call the window Method

alert() and also at the same time "deaden" the link.

The next line is

<A HREF="javascript:void('')" onMouseOver="alert('Hee

hee!');"> Mouse over me!

This is just like the first line, but it uses an onMouseOver instead of an onClick.

 Method 2 (Actions within FORMs):

The second technique we've seen for triggering a Function in response to a mouse action is to place an
onClick Event Handler inside a button type form element, like this:

<FORM>

<INPUT TYPE="button" onClick="doSomething()">

</FORM>

While any JavaScript statement, methods, or functions can appear inside the quotation marks of an

Event Handler, typically, the JavaScript script that makes up the Event Handler is actually a call to a

function defined in the header of the document or a single JavaScript command. Essentially, though,

anything that appears inside a command block (inside curly braces {}) can appear between the

quotation marks.

For instance, if you have a form with a text field and want to call the function checkField() whenever the

value of the text field changes, you can define your text field as follows:

<INPUT TYPE="text" onChange="checkField(this)">

Nonetheless, the entire code for the function could appear in quotation marks rather than a function call:

<INPUT TYPE="text" onChange="if (this.value <= 5) {

alert("Please enter a number greater than 5");

}">

85

To separate multiple commands in an Event Handler, use semicolons

<INPUT TYPE="text" onChange="alert(‘Thanks for the entry.’);

confirm(‘Do you want to continue?’);">

The advantage of using functions as Event Handlers, however, is that you can use the same Event Handler

code for multiple items in your document and, functions make your code easier to read and understand.

Method 3 (BODY onLoad & onUnLoad):

The third technique is to us an Event Handler to ensure that all required objects are defined involve the

onLoad and onUnLoad. These Event Handlers are defined in the <BODY> or <FRAMESET> tag of an

HTML file and are invoked when the document or frameset are fully loaded or unloaded. If you set a flag

within the onLoad Event Handler, other Event Handlers can test this flags to see if they can safely run,

with the knowledge that the document is fully loaded and all objects are defined.

 For example:

<SCRIPT>

var loaded = false; function doit() {

// alert("Everything is \"loaded\" and loaded = " + loaded);

alert('Everything is "loaded" and loaded = ' + loaded);
}

</SCRIPT>

<BODY onLoad="loaded = true;">

-- OR --

<BODY onLoad="window.loaded = true;">

<FORM>

<INPUT TYPE="button" VALUE="Press Me"

onClick="if (loaded == true) doit();">
-- OR --

<INPUT TYPE="button" VALUE="Press Me"

onClick="if (window.loaded == true) doit();">

-- OR --

<INPUT TYPE="button" VALUE="Press Me"

onClick="if (loaded) doit();">

</FORM>

</BODY>

The onLoad Event Handler is executed when the document or frameset is fully loaded, which means

that all images have been downloaded and displayed, all subframes have loaded, any Java Applets and

Plugins (Navigator) have started running, and so on. The onUnLoad Event Handler is executed just

before the page is unloaded, which occurs when the browser is about to move on to a new page. Be

aware that when you are working with multiple frames, there is no guarantee of the order in which the

onLoad Event Handler is invoked for the various frames, except that the Event Handlers for the parent

frame is invoked after the Event Handlers of all its children frames -- This will be discussed in detail in

Week 8.

Setting the bgColor Property

The first example allows the user to change the color by clicking buttons, while the second example

86

allows you to change colors by using drop down boxes.

Event Handlers

EVENT DESCRIPTION

onAbort the user cancels loading of an image

onBlur
input focus is removed from a form element (when the user clicks outside the field) or

focus is removed from a window

onClick the user clicks on a link or form element

onChange the value of a form field is changed by the user

onError an error happens during loading of a document or image

onFocus input focus is given to a form element or a window

onLoad once a page is loaded, NOT while loading

onMouseOut the user moves the pointer off of a link or clickable area of an image map

onMouseOver the user moves the pointer over a hypertext link

onReset the user clears a form using the Reset button

onSelect the user selects a form element’s field

onSubmit a form is submitted (ie, when the users clicks on a submit button)

onUnload the user leaves a page

Note: Input focus refers to the act of clicking on or in a form element or field. This can be done by

clicking in a text field or by tabbing between text fields.

Which Event Handlers Can Be Used

OBJECT EVENT HANDLERS AVAILABLE

Button element onClick, onMouseOver

Checkbox onClick

Clickable ImageMap area onClick, onMouseOver, onMouseOut

Document onLoad, onUnload, onError

Form onSubmit, onReset

Framesets onBlur, onFocus

Hypertext link onClick, onMouseOver, onMouseOut

Image onLoad, onError, onAbort

87

Radio button onClick

Reset button onClick

Selection list onBlur, onChange, onFocus

Submit button onClick

TextArea element onBlur, onChange, onFocus, onSelect

Text element onBlur, onChange, onFocus, onSelect

Window onLoad, onUnload, onBlur, onFocus

JavaScript Arrays

An array object is used to create a database-like structure within a script. Grouping data points

(array elements) together makes it easier to access and use the data in a script. There are

methods of accessing actual databases (which are beyond the scope of this series) but here we're

talking about small amounts of data.

An array can be viewed like a

column of data in a spreadsheet.

The name of the array would be the

same as the name of the column.

Each piece of data (element) in the

array is referred to by a number

(index), just like a row number in a

column.

An array is an object. Earlier, I said that an object is a thing, a collection of properties (array

elements, in this case) grouped together.You can name an array using the same format as a variable,

a function or an object. Remember our basic rules: The first character cannot be a number, you

cannot use a reserved word, and you cannot use spaces. Also, be sure to remember that the name of

the array object is capitalized, e.g. Array.

The JavaScript interpreter uses numbers to access the collection of elements (i.e. the data)

in an array. Each index number (as it is the number of the data in the array's index) refers to

a specific piece of data in the array, similar to an ID number. It's important to remember

that the index numbering of the data starts at "0." So, if you have 8 elements, the first

element will be numbered "0" and the last one will be "7."

Elements can be of any type: character string, integer, Boolean, or even another array. An
array can even have different types of elements within the same array. Each element in the
array is accessed by placing its index number in brackets, i.e. myCar[4]. This would mean
that we are looking for data located in the array myCar which has an index of "4." Since

the numbering of an index starts at "0," this would actually be the fifth index. For instance,

88

in the following array,

var myCar = new array("Chev","Ford","Buick","Lincoln","Truck"); alert(myCar[4])

the data point with an index of "4" would be Truck. In this example, the indexes are

numbered as follows: 0=Chev, 1=Ford, 2=Buick, 3=Lincoln, and 4=Truck. When creating

loops, it's much easier to refer to a number than to the actual data itself.

The Size of the Array

The size of an array is determined by either the actual number of elements it contains or

by actually specifying a given size. You don't need to specify the size of the array.

Sometimes, though, you may want to pre-set the size, e.g.:

var myCar = new Array(20);

That would pre-size the array with 20 elements. You might pre-size the array in order to

set aside the space in memory.

Multidimensional Arrays

This type of an array is similar to parallel arrays. In a multidimensional array, instead of

creating two or more arrays in tandem as we did with the parallel array, we create an array

with several levels or "dimensions." Remember our example of a spreadsheet with rows

and columns? This time, however, we have a couple more columns.

Multidimensional arrays can be created in different ways. Let's look at one of these

method. First, we create the main array, which is similar to what we did with previous

arrays.
var emailList = new Array();

Next, we create arrays for elements of the main array:

emailList[0] = new Array("President", "Paul Smith", psmith@domain.com");

emailList[1] = new Array("Vice President", "Laura Stevens", "lstevens@domain.com");

emailList[2] = new Array("General Manager", "Mary Larsen", "mlarsen@domain.com");

emailList[3] = new Array("Sales Manager", "Bob Lark", "blark@domain.com");

In this script we created "sub arrays" or arrays from another level or "dimension." We used

the name of the main array and gave it an index number (e.g., emailList[0]). Then we

created a new instance of an array and gave it a value with three elements.

mailto:psmith@domain.com
mailto:lstevens@domain.com
mailto:mlarsen@domain.com
mailto:blark@domain.com

89

In order to access a single element, we need to use a double reference. For example, to get

the e-mail address for the Vice President in our example above, access the third element

"[2]" of the second element "[1]" of the array named emailList.

It would be written like this:

var vpEmail = emailList[1][2] alert("The address is: "+ vpEmail)

1. We declared a variable, named it emailList, and initialized it with

a value of a new instance of an array.

2. Next, we created an array for each of the elements within the

original array. Each of the new arrays contained three elements.

3. Then we declared a variable named vpEmail and initialized it with

the value of the third element (lstevens@domain.com) of the second

element "[1]" of the array named emailList.

You could also retrieve the information using something like:

var title = emailList[1][0]

var email = emailList[1][2]

alert("The e-mail address for the " + title +" is: " + email)

Array Properties

length

The length property returns the number of elements in an array. The format is

arrayName.length. The length property is particularly useful when using a loop to

cycle through an array. One example would be an array used to cycle banners:

var bannerImg = new Array();

bannerImg[0]="image-1.gif";

bannerImg[1]="image-2.gif";

bannerImg[2]="image-3.gif";
var newBanner = 0

var totalBan = bannerImg.length

function cycleBan() {

newBanner++

if (newBanner == totalBan) {

newBanner = 0
}

document.banner.src=bannerImg[newBanner]

setTimeout("cycleBan()", 3*1000)

}
window.onload=cycleBan;

90

This portion is then placed in the body where the banner is to be displayed:

Let's take a look and see what happened here:

1. On the first line, we created a new instance of the array bannerImg, and gave it three

data elements. (Remember, we are only making a copy of the Array object here.)

2. Next, we created two variables: newBanner, which has a beginning value of zero; and

totalBan, which returns the length of the array (the total number of elements contained in

the array).
3. Then we created a function named cycleBan. This function will be used to create a loop

to cycle the images.

a. We set the newBanner variable to be increased each time the function cycles.

(Review: By placing the increment operator [" ++ "] after the variable [the

"operand"], the variable is incremented only after it returns its current value to

the script. For example, its beginning value is "0", so in the first cycle it will

return a value of "0" to the script and then its value will be increased by "1".)

b. When the value of the newBanner variable is equal to the variable totalBan (which

is the length of the array), it is then reset to "0". This allows the images to start the

cycle again, from the beginning.

c. The next statement uses the Document Object Method (DOM - we'll be taking a

look at that soon) to display the images on the Web page. Remember, we use the

dot operator to access the properties of an object. We also read the statement

backwards, i.e., "take the element from the array bannerImg, that is specified by the

current value of the variable newBanner, and place it in the src attribute located in

the element with the name attribute of banner, which is located in the document

object."

d. We then used the setTimeout function to tell the script how long to display

each image. This is always measured in milliseconds so, in this case, the

function cycleBan is called every 3,000 milliseconds (i.e., every 3 seconds).

4. Finally, we used the window.onload statement to execute the function cycleBan as soon

as the document is loaded.

There are a total of five properties for the Array object. In addition to the length

property listed above, the others are:

1. constructor: Specifies the function that creates an object's prototype.

2. index: Only applies to JavaScript arrays created by a regular
expression match.

3. input: Only applies to JavaScript arrays created by a regular

expression match.

4. prototype: Used to add properties or methods.

The other properties listed here are either more advanced or seldom used. For now, we'll

stick to the basics.

Javascript Object Hierarchy

Hierarchy Objects

Object Properties Methods Event Handlers

91

Window defaultStatus

frames

opener

parent

scroll

self

status

top

window

alert blur close

confirm focus

open prompt

clearTimeout

setTimeout

onLoad

 onUnload

onBlur

 onFocus

History length

forward

go

back none

Navigator appCodeName

appName

appVersion

mimeTypes

plugins

userAgent

javaEnabled none

document alinkColor

anchors

applets

area

bgColor

cookie

fgColor

forms

images

lastModified

linkColor

links

location

referrer
title

clear close

open write

writeln

none (the onLoad and onUnload event
handlers belong to the Window object.

 vlinkColor

image border

complete

height

hspace

lowsrc

name

src

vspace

width

none none

form action

elements

encoding

FileUpload

method

name

target

submit

reset

onSubmit onReset

92

text defaultValue

name

type

value

focus

blur

select

onBlur

onCharge

onFocus

onSelect

Built-in Objects

Array length join

reverse

sort xx

none

Date none getDate

getDay

getHours

getMinutes

getMonth

getSeconds

getTime

getTimeZoneoffset
getYear

parse

prototype

setDate

setHours

setMinutes

setMonth

setSeconds

setTime

none

 setYear

toGMTString

toLocaleString

UTC

String length
prototype

anchor big blink bold charAt fixed

fontColor

fontSize

indexOf

italics

lastIndexOf

link

small

split

strike

sub

substring

sup

toLowerCase
toUpperCase

Window

93

var myCars=new Array();

var myCars=new Array();
myCars[0]="Saab";
myCars[1]="Volvo";
myCars[2]="BMW";

var myCars=new Array(3);
myCars[0]="Saab";
myCars[1]="Volvo";
myCars[2]="BMW";

var myCars=new Array("Saab","Volvo","BMW");

document.write(myCars[0]);

Saab

myCars[0]="Opel";

JavaScript Array Object

The Array object is used to store multiple values in a single variable.

Create an Array

The following code creates an Array object called myCars:

There are two ways of adding values to an array (you can add as many values as you need to define as

many variables you require).

1: You could also pass an integer argument to control the array's size:

2:Note: If you specify numbers or true/false values inside the array then the type of variables will be

numeric or Boolean instead of string.

Access an Array

You can refer to a particular element in an array by referring to the name of the array and the index

number. The index number starts at 0.

The following code line:

will result in the following output:

Modify Values in an Array

To modify a value in an existing array, just add a new value to the array with a specified index number:

94

document.write(myCars[0]);

Opel

var myDate=new Date();
myDate.setDate(myDate.getDate()
+5);

Now, the following code line:

will result in the following output:

JavaScript Date Object

Create a Date Object

The Date object is used to work with dates and times.

The following code create a Date object called

myDate:

Note: The Date object will automatically hold the current date and time as its initial value!

Set Dates

We can easily manipulate the date by using the methods available for the Date object.

In the example below we set a Date object to a specific date (14th January 2010):

And in the following example we set a Date object to be 5 days into the future:

Note: If adding five days to a date shifts the month or year, the changes are handled automatically by the

Date object itself!

Compare Two Dates

The Date object is also used to compare two dates.

var myDate=new Date();
myDate.setFullYear(2010,0,14);

var myDate=new Date()

95

var myDate=new Date();
myDate.setFullYear(2010,0,14); var
today = new Date();
if (myDate>today)
{
alert("Today is before 14th January 2010");
}
else
{
alert("Today is after 14th January 2010");
}

var pi_value=Math.PI;
var sqrt_value=Math.sqrt(16);

Math.E
Math.PI
Math.SQRT2
Math.SQRT1_
2 Math.LN2
Math.LN10
Math.LOG2E
Math.LOG10E

The following example compares today's date with the 14th January 2010:

JavaScript Math Object

Math Object

The Math object allows you to perform mathematical tasks.

The Math object includes several mathematical constants and methods.

Syntax for using properties/methods of Math:

Note: Math is not a constructor. All properties and methods of Math can be called by using Math as an

object without creating it.

Mathematical Constants

JavaScript provides eight mathematical constants that can be accessed from the Math object. These are:

E, PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10, base-2 log of E, and base-10

log of E.

You may reference these constants from your JavaScript like this:

96

document.write(Math.round(4.7));

5

document.write(Math.random());

0.4218824567728053

4

var txt="Hello world!";
document.write(txt.length);

12

var txt="Hello world!";
document.write(txt.toUpperCase());

HELLO WORLD!

Mathematical Methods

In addition to the mathematical constants that can be accessed from the Math object there are also several
methods available.

The following example uses the round() method of the Math object to round a number to the nearest

integer:

The code above will result in the following output:

The following example uses the random() method of the Math object to return a random number

between 0 and 1:

The code above can result in the following output:

The following example uses the floor() and random() methods of the Math object to return a

random number between 0 and 10:

The code above can result in the following output:

JavaScript String Object

String object

The String object is used to manipulate a stored piece of text.

Examples of use:

The following example uses the length property of the String object to find the length of a string:

The code above will result in the following output:

The following example uses the toUpperCase() method of the String object to convert a string to uppercase

letters:

The code above will result in the following output:

Window Object

97

The Window object is the top level object in the JavaScript

hierarchy. The Window object represents a browser window.

A Window object is created automatically with every instance of a <body> or <frameset> tag.

IE: Internet Explorer, F: Firefox, O: Opera.

Window Object Collections

Collection Description IE F O

frames[] Returns all named frames in the window 4 1 9

Window Object Properties

Property Description IE F O

closed Returns whether or not a window has been closed 4 1 9

defaultStatus Sets or returns the default text in the statusbar of the window 4 No 9

document See Document object 4 1 9

history See History object 4 1 9

length Sets or returns the number of frames in the window 4 1 9

location See Location object 4 1 9

name Sets or returns the name of the window 4 1 9

opener Returns a reference to the window that created the window 4 1 9

outerHeight Sets or returns the outer height of a window No 1 No

outerWidth Sets or returns the outer width of a window No 1 No

pageXOffset Sets or returns the X position of the current page in relation to the
upper left corner of a window's display area

No No No

pageYOffset Sets or returns the Y position of the current page in relation to the

upper left corner of a window's display area

No No No

parent Returns the parent window 4 1 9

personalbar Sets whether or not the browser's personal bar (or directories bar)

should be visible

scrollbars Sets whether or not the scrollbars should be visible

self Returns a reference to the current window 4 1 9

status Sets the text in the statusbar of a window 4 No 9

statusbar Sets whether or not the browser's statusbar should be visible

toolbar Sets whether or not the browser's tool bar is visible or not (can only
be set before the window is opened and you must have
UniversalBrowserWrite privilege)

top Returns the topmost ancestor window 4 1 9

Window Object Methods

Method Description IE F O

alert() Displays an alert box with a message and an OK button 4 1 9

blur() Removes focus from the current window 4 1 9

clearInterval() Cancels a timeout set with setInterval() 4 1 9

clearTimeout() Cancels a timeout set with setTimeout() 4 1 9

close() Closes the current window 4 1 9

98

confirm() Displays a dialog box with a message and an OK and a Cancel
button

4 1 9

createPopup() Creates a pop-up window 4 No No

focus() Sets focus to the current window 4 1 9

moveBy() Moves a window relative to its current position 4 1 9

moveTo() Moves a window to the specified position 4 1 9

open() Opens a new browser window 4 1 9

print() Prints the contents of the current window 5 1 9

prompt() Displays a dialog box that prompts the user for input 4 1 9

resizeBy() Resizes a window by the specified pixels 4 1 9

resizeTo() Resizes a window to the specified width and height 4 1.5 9

scrollBy() Scrolls the content by the specified number of pixels 4 1 9

scrollTo() Scrolls the content to the specified coordinates 4 1 9

setInterval() Evaluates an expression at specified intervals 4 1 9

setTimeout() Evaluates an expression after a specified number of milliseconds 4 1 9

Document Object

The Document object represents the entire HTML document and can be used to access all elements in a

page.

The Document object is part of the Window object and is accessed through the window.document

property.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Document Object Collections

Collection Description IE F O W3C
anchors[] Returns a reference to all Anchor objects in the

document
4 1 9 Yes

forms[] Returns a reference to all Form objects in the

document
4 1 9 Yes

images[] Returns a reference to all Image objects in the

document
4 1 9 Yes

links[] Returns a reference to all Area and Link objects in 4 1 9 Yes

 the document

Document Object Properties

Property Description IE F O W3C

body Gives direct access to the <body> element
cookie Sets or returns all cookies associated with the

current document
4 1 9 Yes

domain Returns the domain name for the current document 4 1 9 Yes
lastModified Returns the date and time a document was last

modified
4 1 No No

99

referrer Returns the URL of the document that loaded the
current document

4 1 9 Yes

title Returns the title of the current document 4 1 9 Yes

URL Returns the URL of the current document 4 1 9 Yes

Document Object Methods

Method Description IE F O W3C

close() Closes an output stream opened with the
document.open() method, and displays the
collected data

4 1 9 Yes

getElementById() Returns a reference to the first object with the
specified id

5 1 9 Yes

getElementsByName() Returns a collection of objects with the specified

name
5 1 9 Yes

getElementsByTagName() Returns a collection of objects with the specified

tagname
5 1 9 Yes

open() Opens a stream to collect the output from any

document.write() or document.writeln() methods
4 1 9 Yes

write() Writes HTML expressions or JavaScript code to a

document

4 1 9 Yes

writeln() Identical to the write() method, with the addition

of writing a new line character after each
expression

4 1 9 Yes

History Object

The History object is actually a JavaScript object, not an HTML DOM object.

The History object is automatically created by the JavaScript runtime engine and consists of an array
of URLs. These URLs are the URLs the user has visited within a browser window.

The History object is part of the Window object and is accessed through the window.history property.

IE: Internet Explorer, F: Firefox, O: Opera.

History Object Properties

Property Description IE F O

length Returns the number of elements in the history list 4 1 9

History Object Methods

Method Description IE F O

back() Loads the previous URL in the history list 4 1 9

forward() Loads the next URL in the history list 4 1 9

go() Loads a specific page in the history list 4 1 9

Form Object

The Form object represents an HTML form.

For each instance of a <form> tag in an HTML document, a Form object is created.

100

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Form Object Collections

Collection Description IE F O W3C

elements[] Returns an array containing each element in the form 5 1 9 Yes

Form Object Properties

Property Description IE F O W3C

acceptCharset Sets or returns a list of possible character-sets for the form data No No No Yes

action Sets or returns the action attribute of a form 5 1 9 Yes
enctype Sets or returns the MIME type used to encode the content of a

form
6 1 9 Yes

id Sets or returns the id of a form 5 1 9 Yes

length Returns the number of elements in a form 5 1 9 Yes

method Sets or returns the HTTP method for sending data to the server 5 1 9 Yes

name Sets or returns the name of a form 5 1 9 Yes

target Sets or returns where to open the action-URL in a form 5 1 9 Yes

Standard Properties

Property Description IE F O W3C

className Sets or returns the class attribute of an element 5 1 9 Yes

dir Sets or returns the direction of text 5 1 9 Yes

lang Sets or returns the language code for an element 5 1 9 Yes

title Sets or returns an element's advisory title 5 1 9 Yes

Form Object Methods

Method Description IE F O W3C

reset() Resets the values of all elements in a form 5 1 9 Yes

submit() Submits a form 5 1 9 Yes

Image Object

The Image object represents an embedded image.

For each instance of an tag in an HTML document, an Image object is created.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Image Object Properties

Property Description IE F O W3C

align Sets or returns how to align an image according to the
surrounding text

5 1 9 Yes

alt Sets or returns an alternate text to be displayed, if a browser

cannot show an image
5 1 9 Yes

101

border Sets or returns the border around an image 4 1 9 Yes
complete Returns whether or not the browser has finished loading the

image
4 1 9 No

height Sets or returns the height of an image 4 1 9 Yes
hspace Sets or returns the white space on the left and right side of the

image
4 1 9 Yes

id Sets or returns the id of the image 4 1 9 Yes

isMap Returns whether or not an image is a server-side image map 5 1 9 Yes
longDesc Sets or returns a URL to a document containing a description

of the image
6 1 9 Yes

lowsrc Sets or returns a URL to a low-resolution version of an image 4 1 9 No

name Sets or returns the name of an image 4 1 9 Yes

src Sets or returns the URL of an image 4 1 9 Yes
useMap Sets or returns the value of the usemap attribute of an client-

side image map
5 1 9 Yes

vspace Sets or returns the white space on the top and bottom of the

image
4 1 9 Yes

width Sets or returns the width of an image 4 1 9 Yes

Standard Properties

Property Description IE F O W3C

className Sets or returns the class attribute of an element 5 1 9 Yes

title Sets or returns an element's advisory title 5 1 9 Yes

Area Object

The Area object represents an area of an image-map (An image-map is an image with clickable

regions). For each instance of an <area> tag in an HTML document, an Area object is created.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium (Internet Standard).

Area Object Properties

Property Description IE F O W3C

accessKey Sets or returns the keyboard key to access an area 5 1 No Yes
alt Sets or returns an alternate text to be displayed, if a browser

cannot show an area
5 1 9 Yes

coords Sets or returns the coordinates of a clickable area in an image-

map
5 1 9 Yes

hash Sets or returns the anchor part of the URL in an area 4 1 No No

host Sets or returns the hostname and port of the URL in an area 4 1 No No

href Sets or returns the URL of a link in an image-map 4 1 9 Yes

id Sets or returns the id of an area 4 1 9 Yes

noHref Sets or returns whether an area should be active or inactive 5 1 9 Yes

pathname Sets or returns the pathname of the URL in an area 4 1 9 No

protocol Sets or returns the protocol of the URL in an area 4 1 9 No

search Sets or returns the query string part of the URL in an area 4 1 9 No

shape Sets or returns the shape of an area in an image-map 5 1 9 Yes

tabIndex Sets or returns the tab order for an area 5 1 9 Yes

target Sets or returns where to open the link-URL in an area 4 1 9 Yes

102

Standard Properties

Property Description IE F O W3C

className Sets or returns the class attribute of an element 5 1 9 Yes

dir Sets or returns the direction of text 5 1 9 Yes

lang Sets or returns the language code for an element 5 1 9 Yes

title Sets or returns an element's advisory title 5 1 9 Yes

Navigator Object

The Navigator object is actually a JavaScript object, not an HTML DOM object.

The Navigator object is automatically created by the JavaScript runtime engine and contains

information about the client browser.

IE: Internet Explorer, F: Firefox, O: Opera.

Navigator Object Collections

Collection Description IE F O

plugins[] Returns a reference to all embedded objects in the document 4 1 9

Navigator Object Properties

Property Description IE F O

appCodeName Returns the code name of the browser 4 1 9

appMinorVersion Returns the minor version of the browser 4 No No

appName Returns the name of the browser 4 1 9

appVersion Returns the platform and version of the browser 4 1 9

browserLanguage Returns the current browser language 4 No 9
cookieEnabled Returns a Boolean value that specifies whether cookies are

enabled in the browser
4 1 9

cpuClass Returns the CPU class of the browser's system 4 No No
onLine Returns a Boolean value that specifies whether the system is in

offline mode
4 No No

platform Returns the operating system platform 4 1 9

systemLanguage Returns the default language used by the OS 4 No No
userAgent Returns the value of the user-agent header sent by the client to

the server
4 1 9

userLanguage Returns the OS' natural language setting 4 No 9

Navigator Object Methods

Method Description IE F O

javaEnabled() Specifies whether or not the browser has Java enabled 4 1 9

taintEnabled() Specifies whether or not the browser has data tainting enabled 4 1 9

ZIP CODE VALIDATION

<!-- TWO STEPS TO INSTALL ZIP CODE VALIDATION:

1. Copy the coding into the HEAD of your HTML document

103

2. Add the last code into the BODY of your HTML document -->

<!-- STEP ONE: Paste this code into the HEAD of your HTML document -->

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Original: Brian Swalwell -->

<!-- This script and many more are available free online at -->

<!-- The JavaScript Source!! http://javascript.internet.com -->

<!—Begin

function validateZIP(field)

{

var valid = "0123456789-";

var hyphencount = 0;

if (field.length!=5 && field.length!=10) {

alert("Please enter your 5 digit or 5 digit+4 zip code.");

 return false;

}

for (var i=0; i < field.length; i++) { temp = "" + field.substring(i, i+1);

if (temp == "-")

hyphencount++;

if (valid.indexOf(temp) == "-1")
{

alert("Invalid characters in your zip code. Please try again.");

 return false;

}

if ((hyphencount > 1) || ((field.length==10) && ""+field.charAt(5)!="-"))

{

alert("The hyphen character should be used with a properly formatted 5 digit+four zip code, like '12345-

6789'. Please try again.");

return false;

}

http://javascript.internet.com/

104

}

return true;

}

// End -->

</script>

</HEAD>

<!-- STEP TWO: Copy this code into the BODY of your HTML document -->

<BODY>

<center>

<form name=zip onSubmit="return validateZIP(this.zip.value)">

Zip: <input type=text size=30 name=zip>

<input type=submit value="Submit">

</form>

</center>

<p><center>

Free JavaScripts provided

by The JavaScript Source

</center><p>

JavaScript Form Validation

JavaScript Form Validation is a way to ensure that the data users enter into a form is correct before it gets

submitted. This helps ensure that things like emails, passwords, and other important details are entered

properly, making the user experience smoother and the data more accurate.

Steps for Form Validation in JavaScript

When we validate a form in JavaScript, we typically follow these steps:

• Data Retrieval:

o The first step is to get the user’s values entered into the form fields (like name, email,

password, etc.). This is done using document.forms.RegForm, which refers to the form with

the name “RegForm”.

• Data Validation:

o Name Validation: We check to make sure the name field isn’t empty and doesn’t contain

any numbers.

o Address Validation: We check that the address field isn’t empty.

http://javascriptsource.com/

105

o Email Validation: We make sure that the email field isn’t empty and that it includes the

“@” symbol.

o Password Validation: We ensure that the password field isn’t empty and that the password

is at least 6 characters long.

o Course Selection Validation: We check that a course has been selected from a dropdown

list.

• Error Handling:

o If any of the checks fail, an alert message is shown to the user using window.alert, telling

them what’s wrong.

o The form focuses on the field that needs attention, helping the user easily fix the error.

• Submission Control:

o If all the validation checks pass, the function returns true, meaning the form can be

submitted. If not, it returns false, stopping the form from being submitted.

• Focus Adjustment:

o The form automatically focuses on the first field that has an error, guiding the user to fix it.

o

Types of Form Validation

• Client-side Validation:

o This is done in the user’s browser before the form is submitted. It provides quick feedback

to the user, helping them fix errors without sending data to the server first.

• Server-side Validation:

o Even though client-side validation is useful, it’s important to check the data again on the

server. This ensures that the data is correct, even if someone tries to bypass the validation in

the browser.

Various Use case

Below are the some use cases of Form Validation in JavaScript.

1. Form validation using jQuery

Here, we have validated a simple form that consists of a username, password, and a confirmed password

using jQuery,

2. Number validation in JavaScript

Sometimes the data entered into a text field needs to be in the right format and must be of a particular type

in order to effectively use the form. For instance, Phone number, Roll number, etc are some details that

must be in digits not in the alphabet.

3. Password Validation Form Using JavaScript

The password Validation form is used to check the password requirements such as the password must have

at least one Uppercase, or lowercase, number, and the length of the password.

4. How to validate confirm password using JavaScript ?

You can validate a confirm password field using JavaScript by comparing it with the original password

field.

5. JavaScript Program to Validate Password using Regular Expressions

A Regular Expression is a sequence of characters that forms a search pattern. The search pattern can be

used for text search and text to replace operations. A regular expression can be a single character or a

more complicated pattern.

https://www.geeksforgeeks.org/form-validation-using-jquery
https://www.geeksforgeeks.org/number-validation-in-javascript
https://www.geeksforgeeks.org/password-validation-form-using-javascript
https://www.geeksforgeeks.org/how-to-validate-confirm-password-using-javascript
https://www.geeksforgeeks.org/javascript-program-to-validate-password-using-regular-expressions
https://www.geeksforgeeks.org/javascript-regexpregular-expression

106

JQuery
jQuery is a fast, small, cross-platform and feature-rich JavaScript library. It is designed to simplify the

client-side scripting of HTML. It makes things like HTML document traversal and manipulation, animation,

event handling, and AJAX very simple with an easy-to-use API that works on a lot of different type of

browsers.

The main purpose of jQuery is to provide an easy way to use JavaScript on your website to make it more

interactive and attractive. It is also used to add animation.

What is jQuery

jQuery is a small, light-weight and fast JavaScript library. It is cross-platform and supports different types of

browsers. It is also referred as ?write less do more? because it takes a lot of common tasks that requires

many lines of JavaScript code to accomplish, and binds them into methods that can be called with a single

line of code whenever needed. It is also very useful to simplify a lot of the complicated things from

JavaScript, like AJAX calls and DOM manipulation.

o jQuery is a small, fast and lightweight JavaScript library.

o jQuery is platform-independent.

o jQuery means "write less do more".

o jQuery simplifies AJAX call and DOM manipulation.

jQuery Features

Following are the important features of jQuery.

o HTML manipulation

o DOM manipulation

o DOM element selection

o CSS manipulation

o Effects and Animations

o Utilities

o AJAX

o HTML event methods

o JSON Parsing

o Extensibility through plug-ins

Why jQuery is required

Sometimes, a question can arise that what is the need of jQuery or what difference it makes on bringing

jQuery instead of AJAX/ JavaScript? If jQuery is the replacement of AJAX and JavaScript? For all these

questions, you can state the following answers.

o It is very fast and extensible.

o It facilitates the users to write UI related function codes in minimum possible lines.

o It improves the performance of an application.

o Browser's compatible web applications can be developed.

o It uses mostly new features of new browsers.

So, you can say that out of the lot of JavaScript frameworks, jQuery is the most popular and the most

extendable. Many of the biggest companies on the web use jQuery.

Some of these companies are:

107

o Microsoft

o Google

o IBM

o Netflix

How to add jQuery to HTML Page?

There are two methods to use jQuery in your HTML page.

1. Using jQuery from CDN Link

The easiest method to include jQuery in your HTML page is by using a CDN link. CDN links hosted the

jQuery files to the servers that can be easily used without downloading the files.

Include jQuery CDN link to the HTML page using <script> tag inside the head section of the page.

2. Download the jQuery Files Locally and use them

Visit the jQuery Official Website and download the latest version of jQuery. Then include the downloaded

jQuery file into your project. Place the jquery.min.js file in a directory within your project, such as js/.

Next, use <script> tag inside the <head> section to add jQuery file into your web page.

Basic Syntax for jQuery Function

In jQuery, the syntax for selecting and manipulating HTML elements is written as:

$(selector).action()

Where –

• $ – This symbol is used to access jQuery. It’s a shorthand for the jQuery function.

• (selector) – It specifies which HTML elements you want to target. The selector can be any valid CSS

selector, such as a class, ID, or tag name.

• .action() – It represents the action or method that you want to perform on the selected elements.

Common actions include manipulating CSS properties, handling events, or performing animations.

jQuery Selectors

jQuery Selectors are used to select and manipulate HTML elements. They are very important part of jQuery

library.

With jQuery selectors, you can find or select HTML elements based on their id, classes, attributes, types and

much more from a DOM.

In simple words, you can say that selectors are used to select one or more HTML elements using jQuery and

once the element is selected then you can perform various operation on that.

All jQuery selectors start with a dollor sign and parenthesis e.g. $(). It is known as the factory function.

The $() factory function

Every jQuery selector start with thiis sign $(). This sign is known as the factory function. It uses the three

basic building blocks while selecting an element in a given document.

S.No. Selector Description

108

1) Tag Name:

It represents a tag name available

in the DOM.

For example: $('p') selects all

paragraphs'p'in the document.

2) Tag ID:

It represents a tag available with a

specific ID in the DOM.

For example: $('#real-id') selects a

specific element in the document

that has an ID of real-id.

3) Tag Class:

It represents a tag available with a

specific class in the DOM.

For example: $('real-class') selects

all elements in the document that

have a class of real-class.

How to use Selectors

The jQuery selectors can be used single or with the combination of other selectors. They are

required at every steps while using jQuery. They are used to select the exact element that you

want from your HTML document.

S,No Selector Description

1) Name:
It selects all elements that match

with the given element name.

2) #ID:
It selects a single element that

matches with the given id.

3) .Class:
It selects all elements that matches

with the given class.

4) Universal(*)
It selects all elements available in a

DOM.

5) Multiple Elements A,B,C

It selects the combined results of

all the specified selectors A,B and

C.

109

Selector Example Description

* $("*") It is used to select all elements.

#id $("#firstname")
It will select the element with

id="firstname"

.class $(".primary")
It will select all elements with

class="primary"

class,.class $(".primary,.secondary")
It will select all elements with the

class "primary" or "secondary"

element $("p") It will select all p elements.

el1,el2,el3 $("h1,div,p")
It will select all h1, div, and p

elements.

:first $("p:first") This will select the first p element

:last $("p:last") This will select he last p element

:even $("tr:even") This will select all even tr elements

:odd $("tr:odd") This will select all odd tr elements

:first-child $("p:first-child")
It will select all p elements that are

the first child of their parent

:first-of-type $("p:first-of-type")
It will select all p elements that are

the first p element of their parent

:last-child $("p:last-child")
It will select all p elements that are

the last child of their parent

:last-of-type $("p:last-of-type")
It will select all p elements that are

the last p element of their parent

110

:nth-child(n) $("p:nth-child(2)")
This will select all p elements that

are the 2nd child of their parent

:nth-last-child(n) $("p:nth-last-child(2)")

This will select all p elements that

are the 2nd child of their parent,

counting from the last child

:nth-of-type(n) $("p:nth-of-type(2)")
It will select all p elements that are

the 2nd p element of their parent

:nth-last-of-type(n) $("p:nth-last-of-type(2)")

This will select all p elements that

are the 2nd p element of their

parent, counting from the last child

:only-child $("p:only-child")
It will select all p elements that are

the only child of their parent

:only-of-type $("p:only-of-type")

It will select all p elements that are

the only child, of its type, of their

parent

parent > child $("div > p")
It will select all p elements that are

a direct child of a div element

parent descendant $("div p")
It will select all p elements that are

descendants of a div element

element + next $("div + p")
It selects the p element that are

next to each div elements

element ~ siblings $("div ~ p")
It selects all p elements that are

siblings of a div element

:eq(index) $("ul li:eq(3)")
It will select the fourth element in

a list (index starts at 0)

:gt(no) $("ul li:gt(3)")
Select the list elements with an

index greater than 3

:lt(no) $("ul li:lt(3)")
Select the list elements with an

index less than 3

111

:not(selector) $("input:not(:empty)")
Select all input elements that are

not empty

:header $(":header") Select all header elements h1, h2 ...

:animated $(":animated") Select all animated elements

:focus $(":focus")
Select the element that currently

has focus

:contains(text) $(":contains('Hello')")
Select all elements which contains

the text "Hello"

:has(selector) $("div:has(p)")
Select all div elements that have a

p element

:empty $(":empty") Select all elements that are empty

:parent $(":parent")
Select all elements that are a parent

of another element

:hidden $("p:hidden") Select all hidden p elements

:visible $("table:visible") Select all visible tables

:root $(":root")
It will select the document's root

element

:lang(language) $("p:lang(de)")
Select all p elements with a lang

attribute value starting with "de"

[attribute] $("[href]")
Select all elements with a href

attribute

[attribute=value] $("[href='default.htm']")

Select all elements with a href

attribute value equal to

"default.htm"

[attribute!=value] $("[href!='default.htm']") It will select all elements with a

href attribute value not equal to

112

"default.htm"

[attribute$=value] $("[href$='.jpg']")

It will select all elements with a

href attribute value ending with

".jpg"

[attribute|=value] $("[title|='Tomorrow']")

Select all elements with a title

attribute value equal to

'Tomorrow', or starting with

'Tomorrow' followed by a hyphen

[attribute^=value] $("[title^='Tom']")
Select all elements with a title

attribute value starting with "Tom"

[attribute~=value] $("[title~='hello']")

Select all elements with a title

attribute value containing the

specific word "hello"

[attribute*=value] $("[title*='hello']")

Select all elements with a title

attribute value containing the word

"hello"

:input $(":input") It will select all input elements

:text $(":text")
It will select all input elements

with type="text"

:password $(":password")
It will select all input elements

with type="password"

:radio $(":radio")
It will select all input elements

with type="radio"

:checkbox $(":checkbox")
Itwill select all input elements with

type="checkbox"

:submit $(":submit")
It will select all input elements

with type="submit"

:reset $(":reset")
It will select all input elements

with type="reset"

113

.

jQuery Events

jQuery events are the actions that can be detected by your web application. They are used to create dynamic

web pages. An event shows the exact moment when something happens

These are some examples of events.

o A mouse click

o An HTML form submission

o A web page loading

o A keystroke on the keyboard

o Scrolling of the web page etc.

These events can be categorized on the basis their types:

Mouse Events

o click

o dblclick

o mouseenter

o mouseleave

Keyboard Events

:button $(":button")
It will select all input elements

with type="button"

:image $(":image")
It will select all input elements

with type="image"

:file $(":file")
It will select all input elements

with type="file"

:enabled $(":enabled") Select all enabled input elements

:disabled $(":disabled")
It will select all disabled input

elements

:selected $(":selected")
It will select all selected input

elements

:checked $(":checked")
It will select all checked input

elements

114

o keyup

o keydown

o keypress

Form Events

o submit

o change

o blur

o focus

Document/Window Events

o load

o unload

o scroll

o resize

Syntax for event methods

Most of the DOM events have an equivalent jQuery method. To assign a click events to all paragraph on a

page, do this:

1. $("p").click ();

The next step defines what should happen when the event fires. You must pass a function to the event.

1. $("p").click(function(){

2. // action goes here!!

3. });

AJAX for data exchange with server

AJAX (Asynchronous JavaScript and XML) is a technique for creating dynamic, asynchronous web

applications. It allows the browser to send and receive data from the server without reloading the entire web

page. While XML was initially used for data exchange, JSON is now the most commonly used format due to

its simplicity.

Here’s an overview of how AJAX is used for data exchange with a server:

Steps in an AJAX Request

1. Create an XMLHttpRequest Object:

o This object is used to interact with the server.

2. Open a Connection:

o Specify the HTTP method (GET/POST), URL, and whether the request is asynchronous.

3. Send the Request:

o Send the request to the server.

4. Handle the Response:

o Use a callback function to process the server's response.

Example: AJAX with JSON

115

Using Vanilla JavaScript

javascript

Copy code

// Create a new XMLHttpRequest object

var xhr = new XMLHttpRequest();

// Configure the request: GET method, endpoint URL, and asynchronous

xhr.open("GET", "https://api.example.com/data", true);

// Set up a callback function to handle the response

xhr.onreadystatechange = function () {

 if (xhr.readyState === 4 && xhr.status === 200) {

 // Parse the JSON response

 var responseData = JSON.parse(xhr.responseText);

 console.log(responseData);

 }

};

// Send the request

xhr.send();

Using Fetch API (Modern Approach)

The Fetch API provides a more modern and cleaner way to handle AJAX requests.

javascript

Copy code

fetch("https://api.example.com/data")

 .then(response => {

 if (!response.ok) {

 throw new Error("Network response was not ok");

 }

 return response.json(); // Parse JSON response

 })

 .then(data => {

 console.log(data); // Handle the data

 })

 .catch(error => {

 console.error("There was a problem with the fetch operation:", error);

 });

Using POST with AJAX

To send data to the server using POST:

Vanilla JavaScript

javascript

Copy code

var xhr = new XMLHttpRequest();

xhr.open("POST", "https://api.example.com/submit", true);

xhr.setRequestHeader("Content-Type", "application/json");

// Callback for response

116

xhr.onreadystatechange = function () {

 if (xhr.readyState === 4 && xhr.status === 200) {

 console.log("Response:", JSON.parse(xhr.responseText));

 }

};

// Send JSON data

var data = JSON.stringify({ name: "John", age: 30 });

xhr.send(data);

Fetch API

javascript

Copy code

fetch("https://api.example.com/submit", {

 method: "POST",

 headers: {

 "Content-Type": "application/json"

 },

 body: JSON.stringify({ name: "John", age: 30 }) // Send JSON data

})

 .then(response => response.json())

 .then(data => {

 console.log("Response:", data);

 })

 .catch(error => {

 console.error("Error:", error);

 });

Key Components of AJAX

1. HTTP Methods:

o GET: Retrieve data from the server.

o POST: Send data to the server for processing.

2. Response Formats:

o JSON (most common), XML, HTML, or plain text.

3. Asynchronous:

o AJAX requests are typically asynchronous, meaning the page doesn’t freeze while waiting for

a server response.

4. Error Handling:

o Check status and readyState (for XMLHttpRequest) or handle errors with .catch (for fetch).

 JSON data format

JSON (JavaScript Object Notation) is a lightweight data format commonly used for data interchange. It's

easy for humans to read and write, and easy for machines to parse and generate. Below is an overview of the

JSON format:

Structure of JSON

• Objects: Represented as a collection of key-value pairs enclosed in curly braces {}.

• Arrays: Represented as an ordered list of values enclosed in square brackets [].

• Values: Can be strings, numbers, booleans, null, objects, or arrays.

117

Syntax Rules

1. Key-Value Pair: Keys must be strings enclosed in double quotes ("), followed by a colon (:), and

then the value.

2. String: Enclosed in double quotes (").

3. Number: Can be an integer or a floating-point value.

4. Boolean: true or false.

5. Null: null.

6. Nested Objects/Arrays: Can be embedded inside one another.

Example JSON

json

Copy code

{

 "name": "John Doe",

 "age": 30,

 "isMarried": false,

 "children": ["Jane", "Jack"],

 "address": {

 "street": "123 Main St",

 "city": "Springfield",

 "zipCode": "12345"

 },

 "hobbies": null

}

Use Cases

• Data transfer in APIs (e.g., REST APIs).

• Configuration files (e.g., package.json in Node.js).

• Storing data in NoSQL databases like MongoDB.

JSON vs. Other Formats

• Advantages: Simple, lightweight, widely supported.

• Drawbacks: No comments allowed, limited data types.

118

UNIT - III

Angular: importance of Angular, Understanding Angular, creating a Basic Angular Application, Angular

Components, Expressions, Data Binding, Built-in Directives, Custom Directives, Implementing

AngularServices in Web Applications.

React:

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing React

Components, Creating Components in React, Data and Data Flow in React, Rendering and Life Cycle

Methods in React, Working with forms in React, integrating third party libraries, Routing in React.

Angular

Getting Started with Angular

a. Defination:-

Angular is an open-source web application framework maintained by Google and a community of

developers. It is designed to build dynamic and interactive single-page applications (SPAs)

efficiently. With Angular, developers can create robust, scalable, and maintainable web

applications.

(Or)

Angular is an open-source, JavaScript framework written in TypeScript. Google maintains it, and its

primary purpose is to develop single-page applications. As a framework, Angular has clear

advantages while also providing a standard structure for developers to work with. It enables users to

create large applications in a maintainable manner.

b. History

Angular, initially released in 2010 by Google, has undergone significant transformations over the

years. The first version, AngularJS, introduced concepts like two-way data binding and directives.

However, as web development evolved, AngularJS faced limitations in terms of performance and

flexibility.

In 2016, Angular 2 was released, which was a complete rewrite of AngularJS, focusing on

modularity and performance. Since then, Angular has continued to evolve, with regular updates

and improvements to meet the demands of modern web development.

c. Why Angular?

JavaScript is the most commonly used client-side scripting language. It is written into HTML

documents to enable interactions with web pages in many unique ways. As a relatively easy-to-

learn language with pervasive support, it is well-suited to develop modern applications.

But is JavaScript ideal for developing single-page applications that require modularity, testability,

and developer productivity? Perhaps not.

These days, we have a variety of frameworks and libraries designed to provide alternative

solutions. With respect to front-end web development, Angular addresses many, if not all, of the

issues developers face when using JavaScript on its own.

d. Here are some of the features of Angular

1. Custom Components

Angular enables users to build their components that can pack functionality along with

rendering logic into reusable pieces.

2. Data Binding

Angular enables users to effortlessly move data from JavaScript code to the view, and react to

user events without having to write any code manually.

3. Dependency Injection

Angular enables users to write modular services and inject them wherever they are needed. This

improves the testability and reusability of the same services.

4. Testing

https://www.simplilearn.com/tutorials/javascript-tutorial/introduction-to-javascript
https://www.simplilearn.com/tutorials/typescript-tutorial/typescript-interview-questions

119

Tests are first-class tools, and Angular has been built from the ground up with testability in

mind. You will have the ability to test every part of your application—which is highly

recommended.

5. Comprehensive

Angular is a full-fledged JavaScript framework and provides out-of-the-box solutions for server

communication, routing within your application, and more.

6. Browser Compatibility

Angular works cross-platform and compatible with multiple browsers. An Angular application

can typically run on all browsers (Eg: Chrome, Firefox) and operating systems, such as Windows,

macOS, and Linux.

7. Two-Way Data Binding: Angular provides seamless synchronization between the model and

the view, allowing for easy management of user inputs.

8. Directives: Angular offers a rich set of built-in directives for manipulating the DOM, such as

ngIf, *ngFor*, and *ngSwitch*.

9. Routing: Angular’s powerful routing module enables to build SPAs with multiple views and

navigation between them.

10. HTTP Client: Angular includes an HTTP client module for making server

requests, simplifying data fetching and manipulation.

e. Advantages of Angular

• Productivity: Angular’s extensive tooling and ecosystem streamline development

tasks, enabling faster project completion.

• Maintainability: Angular’s modular architecture and clear separation of concerns

promote code organization and maintainability.

• Scalability: Angular is well-suited for building large-scale applications, thanks to

its component-based architecture and robust performance.

• Community Support: Being backed by Google and a vast community of developers, Angular

enjoys strong community support and continuous improvement.

f. Disadvantages of Angular

• Learning Curve: Angular has a steep learning curve, especially for beginners, due to

its complex concepts and extensive documentation.

• Performance Overhead: Angular’s powerful features come with a performance cost,

and poorly optimized applications may suffer from performance issues.

• Size: Angular applications tend to have larger file sizes compared to other frameworks, which

may impact load times, especially on mobile devices.

• Migration: Upgrading between major Angular versions can be challenging and

time- consuming, requiring significant changes to existing codebases.

g. Angular Prerequisites

There are three main prerequisites.

NodeJS

Angular uses Node.js for a large part of its build environment. As a result, to get started with

Angular, you will need to have Node.js installed on your system. You can head to the NodeJS

official website to download the software. Install the latest version and confirm them on you

command prompt by running the following commands:

Node --version npm --v

https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-nodejs

120

Angular CLI

The Angular team has created a command-line interface (CLI) tool to make it easier to bootstrap

and develop your Angular applications. As it significantly helps to make the process of

development easier, we highly recommend using it for your initial angular projects at the least.

To install the CLI, in the command prompt, type the following

commands Installation:

npm install -g @angular/cli

Confirmation -

ng--version

Text Editor

You need a text editor to write and run your code. The most popularly used integrated

development environment (IDE) is Visual Studio Code (VS Code). It is a powerful source code

editor that is available on Windows, macOS, and Linux platforms.

Now, Let’s create our first Angular HelloWorld Application.

 Creating an Angular Application

Step 1: Install Angular CLI: Angular CLI (Command Line Interface) is a powerful tool for

https://www.simplilearn.com/tutorials/angular-tutorial/angular-project

121

scaffolding and managing Angular applications. Install it globally using npm:

 Npm install -g @angular/cli

Step 2: Create a New Angular Project: Use Angular CLI to create a new Angular project.

Navigate to the desired directory and run:

 ng new my-angular-app //creating standalone application

(or)

Ng new my-angular-app –standalone false //creating non-standalone application project

structure is different adding two more files app.module.ts and app-routing.module.ts

Step 3: Navigate to the Project Directory: Move into the newly created project directory:

 cd my-angular-app

Step 4: Serve the Application: Launch the development server to see your app in action:

 ng serve

Folder Structure:

Dependencies:

122

Example:

Root HTML - index.html(default code)

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>HelloWorld</title>

<base href="/">

<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- app.component.html -->

<h1>Hello Angular</h1>

//app.component.ts

import { Component } from '@angular/core';

import { RouterOutlet } from '@angular/router';

@Component({

selector: 'app-root',

standalone: true,

imports: [RouterOutlet],

templateUrl:

'./app.component.html', styleUrl:

'./app.component.css'

})

export class AppComponent {
title = 'my-angular-app';

}

"dependencies": {
"@angular/animations":
"^17.3.0",
"@angular/common":
"^17.3.0",
"@angular/compiler":
"^17.3.0",
"@angular/core":
"^17.3.0",
"@angular/forms":
"^17.3.0",
"@angular/platform-browser":
"^17.3.0", "@angular/platform-
browser-dynamic": "^17.3.0",
"@angular/router": "^17.3.0",
"rxjs": "~7.8.0",
"tslib": "^2.3.0",
"zone.js": "~0.14.3"

}

123

<link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

<app-root></app-root>

</body>

</html>

The only main thing in this file is the <app-root> element. This is the marker for loading the

application. All the application code, styles, and inline templates are dynamically injected into the

index.html file at run time by the ng serve command.

Output:

Upon running `ng serve`, the Angular CLI will compile the application and launch a

development server. Open a web browser and navigate to `http://localhost:4200` to view the

application running locally.

http://localhost:4200/

124

2. Angular Components:-

The above image showing Gmail is a Single Page Application each part consider like a
component like logo component, sign-in component etc.,

Defination:-

The component is the basic building block of Angular. It has a selector, template, style, and other
properties, and it specifies the metadata required to process the component.

125

ng gc <component_name>

 OR

ng generate component <component_name>

parts of an Angular Component

An Angular component has several parts, such as:

Selector

It is the CSS selector that identifies this component in a template. This corresponds to the HTML

tag that is included in the parent component. You can create your own HTML tag. However, the

same has to be included in the parent component.

Template

It is an inline-defined template for the view. The template can be used to define some markup.

The markup could typically include some headings or paragraphs that are displayed on the UI.

TemplateUrl

It is the URL for the external file containing the template for the view.

Styles

These are inline-defined styles to be applied to the component’s view

styleUrls

List of URLs to stylesheets to be applied to the component’s view.

Before Creating Angular Component create Angular Project using this

command ng new Projectname or na new projectname –standalone false

Creating a Component in Angular 8:

To create a component in any angular application, follow the below steps:

• Get to the angular app via your terminal.(ng new project_name)

• Create a component using the following command:

• Following files will be created after generating the component:

https://www.simplilearn.com/tutorials/html-tutorial/html-tags

126

Note:-write below picture four files in exam important to explaining component

Using a component in Angular 8:

• Go to the component.html file and write the necessary HTML code.

gfg.component.html:

• Go to the component.css file and write the necessary CSS code.

gfg.component.css:

• Write the corresponding code in component.ts file.

gfg.component.ts:

h1{

color: green;

font-size: 30px;

}

<h1>GeeksforGeeks</h1>

import { Component, OnInit } from
'@angular/core';

@Component({

selector: 'app-gfg',

127

• Run the Angular app using ng serve

–open Output:

Properties, Events & Binding with ngModel

Data Binding

Data binding is the core concept of Angular 8 and used to define the communication between a

component and the DOM. It is a technique to link your data to your view layer. In simple words,

you can say that data binding is a communication between your typescript code of your component

and your template which user sees. It makes easy to define interactive applications without

worrying about pushing and pulling data.

Data binding can be either one-way data binding or two-way data binding.

One-way databinding

One way databinding is a simple one way communication where HTML template is changed when

we make changes in TypeScript code.

Or

In one-way databinding, the value of the Model is used in the View (HTML page) but you can't

update Model from the View. Angular Interpolation / String Interpolation, Property Binding, and

Event Binding are the example of one-way databinding.

Two-way databinding

In two-way databinding, automatic synchronization of data happens between the Model and the

View. Here, change is reflected in both components. Whenever you make changes in the Model, it

will be reflected in the View and when you make changes in View, it will be reflected in Model.

templateUrl:

'./gfg.component.html',

styleUrls:

['./gfg.component.css']

})

export class

GfgComponent{ a

="GeeksforGeeks";

}

128

This happens immediately and automatically, ensures that the HTML template and the TypeScript

code are updated at all times.

Angular provides four types of data binding and they are different on the way of data flowing.

o String Interpolation

o Property Binding

o Event Binding

o Class binding

o Style binding

o Two-way binding

One way Data Binding:-

1. String Interpolation

2. Property Binding

3. Event Binding

4. Class binding

5. Style binding

1. String Interpolation

String Interpolation is a one-way databinding technique which is used to output the data from a

TypeScript code to HTML template (view). It uses the template expression in double curly

braces to display the data from the component to the view. String interpolation adds the value of a

property from the component.

For example:

{{ data }}

We have already created an Angular project using

Angular CLI. Here, we are using the same project

for this example.

Open app.component.ts file and use the following code within the file:

https://www.javatpoint.com/data-binding-in-angular-8#StringInterpolation
https://www.javatpoint.com/data-binding-in-angular-8#PropertyBinding
https://www.javatpoint.com/data-binding-in-angular-8#EventBinding
https://www.javatpoint.com/data-binding-in-angular-8#Two-wayBinding
https://www.javatpoint.com/data-binding-in-angular-8#StringInterpolation
https://www.javatpoint.com/data-binding-in-angular-8#PropertyBinding
https://www.javatpoint.com/data-binding-in-angular-8#EventBinding

129

1. import { Component } from '@angular/core';

2. @Component({

3. selector: 'app-root',

4. templateUrl: './app.component.html',

5. styleUrls: ['./app.component.css']

6. })

7. export class AppComponent {

8. title = 'Data binding example using String Interpolation';

9. }

Now, open app.component.html and use the following code to see string interpolation.

1. <h2>

2. {{ title }}

3. </h2>

130

Now, open Node.js command prompt and run the ng serve command to see the result.

Output:

ADVERTISEMENT

131

String Interpolation can be used to resolve some other expressions too.

 Let's see an example.

Example:

Update the app.component.ts file with the following code:

1. import { Component } from '@angular/core';

2. @Component({

3. selector: 'app-root',

4. templateUrl: './app.component.html',

5. styleUrls: ['./app.component.css']

6. })

7. export class AppComponent {

8. title = 'Data binding example using String Interpolation';

9. numberA: number = 10;

10. numberB: number = 20;

11. }

app.component.html:

1. <h2>Calculation is : {{ numberA + numberB }}</h2>

Output:

2. Property Binding in Angular 8

Property Binding is also a one-way data binding technique. In property binding, we bind a

property of a DOM element to a field which is a defined property in our component TypeScript

code. Actually Angular internally converts string interpolation into property binding.

132

Note: String Interpolation and Property binding both are one-way binding. Means, if field value in the
component changes, Angular will automatically update the DOM. But any changes in the DOM will not be
reflected back in the component.

For example:

Property binding is preferred over string interpolation because it has shorter and cleaner code String

interpolation should be used when you want to simply display some dynamic data from a

component on the view between headings like h1, h2, p etc.

Property Binding Example

Open app.componnt.ts file and add the following code:

1. import { Component } from '@angular/core';

2. @Component({

3. selector: 'app-root',

4. templateUrl: './app.component.html',

5. styleUrls: ['./app.component.css']

6. })

7. export class AppComponent {

8. title = "Data binding using Property Binding";

9. imgUrl="https://static.javatpoint.com/tutorial/angular7/images/angular-7-logo.png";

10. }

133

Now, open app.component.html and use the following code for property binding:

1. <h2>{{ title }}</h2> <!-- String Interpolation -->

2. <!-- Property Binding -->

134

Run the ng serve command and open local host to see the result.

Output:

Event Binding in Angular 8

In Angular 8, event binding is used to handle the events raised from the DOM like button click,

mouse move etc. When the DOM event happens (eg. click, change, keyup), it calls the specified

method in the component. In the following example, the cookBacon() method from the component

is called when the button is clicked:

For example:

1. <button (click)="cookBacon()"></button>

Event Binding Example

Let's take a button in the HTML template and handle the click event of this button. To implement
event binding, we will bind click event of a button with a method of the component.

Now, open the app.component.ts file and use the following code:

 Backward Skip 10sPlay VideoForward Skip 10s

ADVERTISEMENT

1. import { Component } from '@angular/core';

2. @Component({

3. selector: 'app-root',

4. templateUrl: './app.component.html',

5. styleUrls: ['./app.component.css']

6. })

135

7. export class AppComponent {

8. onSave($event){

9. console.log("Save button is clicked!", $event);

10. }

11. }

app.component.html:

1. <h2> Event Binding Example</h2>

2. <button (click)="onSave($event)">Save</button> <!--Event Binding-->

3.

136

Output:

Click on the "Save" button and open console to see result.

137

Now, you can see that the "Save" button is clicked.

4. Class Binding

Class binding in Angular makes it very easy to set the class property of a view element. We can set or

remove the CSS class names from an element’s class attribute with the help of class binding. We bind a

class of a DOM element to a field that is a defined property in our Typescript Code. Its syntax is like that

of property binding.

Syntax:

Approach:

• Define a property element in the app.component.ts file.

• In the app.component.html file, set the class of the HTML element by assigning the

property value to the app.component.ts file’s element.

Example 1: Setting the class element using class binding.

app.component.html

• HTML

<h1 [class] = "geeky"> GeeksforGeeks

</h1>

Upper Heading's class is : "{{ g[0].className }}"

app.component.ts

• Javascript

Output:

<element [class] = "typescript_property">

import { Component, OnInit } from '@angular/core';

@Component({

selector: 'app-root',

templateUrl: './app.component.html'

})

export class AppComponent {

geeky = "GeekClass";

g = document.getElementsByClassName(this.geeky);

}

138

Note: For two way data binding, we have to enable the ngModel directive. It depends upon
FormsModule in angular/forms package, so we have to add FormsModule in imports[] array in the
AppModule.

5. Style Binding

It is very easy to give the CSS styles to HTML elements using style binding in Angular 8. Style binding is

used to set a style of a view element. We can set the inline styles of an HTML element using the style

binding in angular. You can also add styles conditionally to an element, hence creating a dynamically styled

element.

Syntax:

Example 1: app.component.html:

• HTML

Output:

b. Two way Data Binding using ngmodel

We have seen that in one-way data binding any change in the template (view) were not be reflected

in the component TypeScript code. To resolve this problem, Angular provides two-way data

binding. The two-way binding has a feature to update data from component to view and vice-

versa.

In two-way databinding, automatic synchronization of data happens between the Model and the

View. Here, change is reflected in both components. Whenever you make changes in the Model, it

will be reflected in the View and when you make changes in View, it will be reflected in Model.

This happens immediately and automatically, ensures that the HTML template and the TypeScript
code are updated at all times.

In two way data binding, property binding and event binding are combined together.

Syntax:

1. [(ngModel)] = "[property of your component]"

<element [style.style-property] = "'style-value'">

<h1

[style.color] = "'green'"

[style.text-align] = "'center'" >

GeeksforGeeks

</h1>

139

Let's take an example to understand it better.

Note:-when you are using ngmodel import FormsModule

[property binding] + (event binding) = [(property)]

[ngModel] + (ngModelChange) = [(ngModel)]

[text] + (textChange) = [(text)]

Open your project's app.module.ts file and use the following code:

1. import { BrowserModule } from '@angular/platform-browser';

2. import { NgModule } from '@angular/core';

3. import {FormsModule} from '@angular/forms';

4. import { AppComponent } from './app.component';

5. @NgModule({

6. declarations: [

7. AppComponent

8.],

9. imports: [

10. BrowserModule,

11. FormsModule

12.],

13. providers: [],

14. bootstrap: [AppComponent]

15. })

16. export class AppModule { }

140

app.component.ts file:

1. import { Component } from "@angular/core";

2. @Component({

3. selector: "app-root",

4. templateUrl: "./app.component.html",

5. styleUrls: ["./app.component.css"]

6. })

7. export class AppComponent {

8. fullName: string = "Hello JavaTpoint";

9. }

141

app.component.html file:

1. <h2>Two-way Binding Example</h2>

2. <input [(ngModel)]="fullName" />

3. <p> {{fullName}} </p>

Now, start your server and open local host browser to see the result.

Output:

142

You can check it by changing textbox value and it will be updated in component as well.

For example:

143

(OR)

Without using ngmodel

[property binding] + (event binding) = [(property)]

app.component.html

<label>User Name</label>

<input type="text" [value]="text" (input)="updateValue

($event)">

<h1>{{text}}</h1>

app.component.ts

fullName: string = "Hello JavaTpoint";

Angular Directives

The Angular 8 directives are used to manipulate the DOM. By using Angular directives, you can

change the appearance, behavior or a layout of a DOM element. It also helps you to extend

HTML.

144

Angular 8 directives can be classified in 3 categories based on how they behave:

o Component Directives

o Structural Directives

o Attribute Directives

Component Directives: Component directives are used in main class. They contain the detail of

how the component should be processed, instantiated and used at runtime.

Structural Directives: Structural directives start with a * sign. These directives are used to

manipulate and change the structure of the DOM elements. For example, *ngIf directive,

*ngSwitch directive, and

*ngFor directive.

o *ngIf Directive: The ngIf allows us to Add/Remove DOM Element.

o *ngSwitch Directive: The *ngSwitch allows us to Add/Remove DOM Element. It is

similar to switch statement of C#.

o *ngFor Directive: The *ngFor directive is used to repeat a portion of HTML template once

per each item from an iterable list (Collection).

Attribute Directives: Attribute directives are used to change the look and behavior of the DOM

elements. For example: ngClass directive, and ngStyle directive etc.

o ngClass Directive: The ngClass directive is used to add or remove CSS classes to an HTML

element.

o ngStyle Directive: The ngStyle directive facilitates you to modify the style of an HTML

element using the expression. You can also use ngStyle directive to dynamically change

the style of your HTML element.

145

5. Fetch Data from a Service

What is the Need for Angular Services?

We’re sure you are aware of the concept of components in Angular. The user interface of the

application is developed by embedding several components into the main component.

However, these components are generally used only for rendering purposes. They are only used to define

what appears on the user interface. Ideally, other tasks, like data and image fetching, network connections,

database management, are not performed. Then how are these tasks achieved? And what if more than one

component performs similar tasks? Well, Services take care of this. They perform all the operational tasks

for the components.

• Services avoid rewriting of code. A service can be written once and injected into all the

components that use that service

• A service could be a function, variable, or feature that an application needs

What Are Angular Services?

Angular services are objects that get instantiated just once during the lifetime of an application.

They contain methods that maintain data throughout the life of an application, i.e., data is

available all the time.

https://www.simplilearn.com/tutorials/angular-tutorial/angular-components
https://www.simplilearn.com/tutorials/programming-tutorial/coding-for-beginners

146

The main objective of a service is to organize and share business logic, models, or data and

functions with different components of an Angular application. They are usually implemented

through dependency injection.

Features of Angular Services

• Services in Angular are simply typescript classes with the @injectible decorator. This decorator

tells angular that the class is a service and can be injected into components that need that

service. They can also inject other services as dependencies.

• As mentioned earlier, these services are used to share a single piece of code across multiple

components. These services are used to hold business logic.

• Services are used to interact with the backend. For example, if you wish to make AJAX calls,

you can have the methods to those calls in the service and use it as a dependency in files.

• In angular, the components are singletons, meaning that only one instance of a service that

gets created, and the same instance is used by every building block in the application.

• A service can be registered as a part of the module, or as a part of the component. To register

it as a part of the component, you’ll have to specify it in the providers’ array of the module.

Fetch data from service Example:-

https://www.simplilearn.com/tutorials/asp-dot-net-tutorial/ajax-in-asp-dot-net

147

Use this command ng g s service_name

Creating Angular Project Use below Commands

• npm install –g @angular/cli //creating cli

• ng version

• ng new prog9 --standalone false //creating angular project SPA(Single page application)

//app component is a default component.

• cd prog9

• ng g c header //creating header component

• ng g c home //creating home component

• ng g c profile //creating profile component

• ng serve //running angular project

• Use this command for creating service ng g s service_name

Creating body of about, contact, home and header. Header is a navbar this page creating

routerLinks about and contact. Home is a default link when header loaded it is displayed.

App.module.ts file creating url paths for each page.

Here test.service.ts file is creating for displaying fruits names you can access service data any

component here fetching data service to about.

1) about.component.html:-

<h1>This is About Component</h1>

<h3>Which Fruit You Like?</h3>

<div *ngFor="let m of names">

{{m}}

</div>

About.component.ts:-

import { Component } from '@angular/core';

import { TestService } from '../test.service'; @Component({selector: 'app-about', templateUrl:

'./about.component.html', styleUrl: './about.component.css'

})

export class AboutComponent { constructor(private ts:TestService){

}

names=this.ts.names;

}

2) contact.component.html:-

<h1>This is Contact Component</h1>

3) header.component.css:-

148

ul li{

list-style: none;

}

ul li a{

text-decoration: none;

}

ul{

display: flex;

justify-content: flex-start; gap: 20px;

background-color: aqua; height: 50px;

}

a{

line-height:50px; color:black; margin:0 20px; font-weight: bold; font-size:30px;

}

4) header.component.html:-

about

contact

5) home.component.html:-

<h1>This is Home Component</h1>

6) notfound.component.html:-

<p>notfound works!</p>

7) app.component.html:-

<app-header></app-header>

<router-outlet></router-outlet>

http://home.component.html/

149

8) app.module.ts:-

import { AppComponent } from './app.component';

import { HeaderComponent } from './header/header.component';

import { AboutComponent } from './about/about.component';

 import { ContactComponent } from './contact/contact.component';

import { HomeComponent } from './home/home.component';

import { NotfoundComponent } from './notfound/notfound.component';

import { RouterModule,Routes } from '@angular/router';

const routes:Routes=[

{

path:'',component:HomeComponent

},

{

path:'about',component:AboutComponent

},

{

path:'contact',component:ContactComponent

},

{

path:'**',component:NotfoundComponent

}

]

imports: [

RouterModule.forRoot(routes)

],

Test.service.ts:-

import { Injectable } from '@angular/core';

@Injectable({ providedIn: 'root'})

export class TestService {

constructor() { } names=['Mango','Banana','Watermelon','Apple'];

150

1. "styles": [

3. "node_modules/bootstrap/dist/css/bootstrap.min.css"
4.]

"src/styles.css", 2.

}

Output:

6. Submit data to service:-

npm install bootstrap --save

When Bootstrap is installed open angular.json file and add bootstrap.min.css file reference under

"styles":

Now we need to create components and service. Use the following commands to create the same.

ng g c header ng g c reg

Note

g stands for generate | c stands for Component | s stands for Service

Open app.modules.ts file and add these lines:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { RegComponent } from './reg/reg.component';

import { HeaderComponent } from './header/header.component';

import { FormsModule,ReactiveFormsModule } from '@angular/forms';

import { RouterModule,Routes } from '@angular/router';

const routes: Routes = [

151

1. <app-header></app-header>
2. <router-outlet></router-outlet>

1. public SaveEmployee(empdata) {

3. console.log("Email Id : " + empdata.regEmail);
4. }

console.log("Full Name : " + empdata.regFullName); 2.

{ path: "reg", component: RegComponent }

];

imports: [BrowserModule, AppRoutingModule, FormsModule, ReactiveFormsModule,

RouterModule.forRoot(routes)

]

In app.component.html replace the existing code with the below code:

Let's start with components now.

Open header.component.html file and replace with the code below.

create

Open header.component.css file and replace with the code below.

ul{

background-color:aqua;

}

Now let's create a function in Service.

Open data.service.ts file and replace with the code below.

Open reg.component.html file and replace with the code below.

1. <div class="container" style="margin-top: 150px;">

2. <form [formGroup]="frmRegister" (ngSubmit)="SaveEmployee(frmRegister.valu

e)">

3. <div class="panel panel-primary">

4. <div class="panel-heading">

5. <h3 class="panel-title">Employee Registration</h3>

6. </div>

7. <div class="panel-body">

8. <div class="form-group">

9. <label for="fullName">Full Name</label>

10. <input id="fullName" formControlName="regFullName" type=

"text" class="form-control" required />

11. </div>

12. <div class="form-group">

152

1. import {

3. OnInit
4. } from '@angular/core';

Component, 2.

13. <label for="email">Email</label>

14. <input id="email" formControlName="regEmail" type="email

" class="form-control" required />

15. </div>

16. </div>

17. <div class="panel-footer">

18. <button type="submit" class="btn btn-
primary">Save</button>

19. </div>

20. </div>

21. </form>

22. </div>

Open reg.component.ts file and replace with the code below.

import {

5. FormGroup,

6. FormBuilder

7. } from '@angular/forms';

8. import {

9. DataService

10. } from '../data.service';

11. @Component({

12. selector: 'app-reg',

13. templateUrl: './reg.component.html',

14. styleUrls: ['./reg.component.css']

16. })

17. export class RegComponent implements OnInit {

18. frmRegister: FormGroup;

19. constructor(private _fb: FormBuilder, private dataservice: DataService)

{}

20. ngOnInit(): void {

21. this.frmRegister = this._fb.group({

22. regFullName: "",

23. regEmail: ""

24. });

25. }

26. SaveEmployee(value) {

27. this.dataservice.SaveEmployee(value);

28. }

29. }

Now build your application by ng build. Run application by ng serve.

Output:-

153

import { BrowserModule } from '@angular/platform-
browser'; import { NgModule } from '@angular/core';
import { BrowserAnimationsModule } from '@angular/platform-
browser/animations'; import { HttpClientModule } from
'@angular/common/http';
import { AppComponent } from './app.component';
@NgModule({

declarations:
[
AppCompo
nent

],

imports: [
BrowserMo
dule,
BrowserAnimationsModule
, HttpClientModule

],

providers: [],
bootstrap: [AppComponent]

})

export class AppModule { }

7. Http Module:-

Defination:-

$http is an AngularJS service for reading data from remote servers. Implements an HTTP client

API for Angular apps that relies on the XMLHttpRequest interface exposed by browsers. Includes

testability features, typed request and response objects, request and response interception,

observable APIs, and streamlined error handling.

These components are self-sufficient and can be used on their own without being tied to a specific

NgModule. But, sometimes, when you’re working with these standalone components, you might

need to fetch data from servers or interact with APIs using HTTP requests.

We need to import the http module to make use of the http service. Let us consider an example

to understand how to make use of the http service.

Example1:-Fetching data from API and displayed console

To start using the http service, we need to import the module in app.module.ts as shown below −

154

import { Component } from '@angular/core';
import { HttpClient } from
'@angular/common/http'; @Component({

selector: 'app-root',
templateUrl:
'./app.component.html',
styleUrls:
['./app.component.css']

})

export class AppComponent {
constructor(private http:
HttpClient) { } ngOnInit() {

this.http.get("http://jsonplaceholder.typicode.com/users").

If you see the highlighted code, we have imported the HttpClientModule from

@angular/common/http and the same is also added in the imports array.

Let us now use the http client in the app.component.ts.

Let us understand the code highlighted above. We need to import http to make use of the service,

which is done as follows −

import { HttpClient } from '@angular/common/http';

In the class AppComponent, a constructor is created and the private variable http of type Http.
To fetch the data, we need to use the get API available with http as follows

this.http.get();

It takes the url to be fetched as the parameter as shown in the code.

subscribe((data) ⇒ console.log(data))
}

}

http://jsonplaceholder.typicode.com/users

155

import { Component } from '@angular/core';
import { HttpClient } from '@angular/common/http';

We will use the test url − https://jsonplaceholder.typicode.com/users to fetch the json data. The

subscribe will log the output in the console as shown in the browser −

If you see, the json objects are displayed in the console. The objects can be displayed in the browser too.

Example2:-

For the objects to be displayed in the browser,

update the codes in app.component.html and

app.component.ts as follows −

https://jsonplaceholder.typicode.com/users

156

In app.component.ts, using the subscribe method we will call the display data method and pass

the data fetched as the parameter to it.

In the display data method, we will store the data in a variable httpdata. The data is displayed in

the browser using for over this httpdata variable, which is done in the app.component.html file.

<ul *ngFor = "let data of httpdata">

Name : {{data.name}} Address: {{data.address.city}}

The json object is as follows −

{

"id": 1,

"name": "Leanne Graham", "username": "Bret",

"email": "Sincere@april.biz",

"address": {

"street": "Kulas Light",

"suite": "Apt. 556",

"city": "Gwenborough",

 "zipcode": "92998-3874",

"geo": {

"lat": "-37.3159",

"lng": "81.1496"

}

},

"phone": "1-770-736-8031 x56442",

@Component({
selector: 'app-
root',
templateUrl:
'./app.component.html',
styleUrls:
['./app.component.css']

})

export class AppComponent {
constructor(private http: HttpClient) { }
httpdata;
ngOnInit() {

this.http.get("http://jsonplaceholder.typicode.com/us
ers")
.subscribe((data) => this.displaydata(data));

}

displaydata(data) {this.httpdata = data;}
}

mailto:Sincere@april.biz
http://jsonplaceholder.typicode.com/users
http://jsonplaceholder.typicode.com/users

157

import { Component } from '@angular/core';
import { HttpClient } from '@angular/common/http';
@Component({

selector: 'app-root',
templateUrl:
'./app.component.html',
styleUrls:

"website": "hildegard.org",

"company": {

"name": "Romaguera-Crona",

"catchPhrase": "Multi-layered client-

server neural-net", "bs": "harness real-time

e-markets"

}

}

The object has properties such as id, name, username, email, and address that internally has street,

city, etc. and other details related to phone, website, and company. Using the for loop, we will

display the name and the city details in the browser as shown in the app.component.html file.

This is how the display is shown in the browser −

Let us now add the search parameter, which will filter based on specific data.

Example 3:-

We need to fetch the data based on the search param passed.

Following are the changes done in app.component.html and

158

app.component.ts files − app.component.ts

For the get api, we will add the search param id = this.searchparam. The searchparam is equal to

2. We need the details of id = 2 from the json file.

This is how the browser is displayed −

We have consoled the data in the browser, which is received from the http. The same is

displayed in the browser console. The name from the json with id = 2 is displayed in the

browser.

Example4:-

Creating Angular Project Use below Commands

• npm install –g @angular/cli //creating cli

• ng version

• ng new prog9 //creating angular project SPA(Single page application) //app
component is a default component.

• cd prog9

• ng g c header //creating header component

• ng g c home //creating home component

• ng g c profile //creating profile component

• ng serve //running angular project

Step1: header.component.css

ul li{

list-style: none;

}

export class AppComponent {
constructor(private http:
HttpClient) { } httpdata;
nam
e;
sear
chpa
ram
= 2;
ngO
nInit(
) {

this.http.get("http://jsonplaceholder.typicode.com/users?id="+this.searchparam)
.subscribe((data) => this.displaydata(data));

}

displaydata(data) {this.httpdata = data;}
}

http://jsonplaceholder.typicode.com/users?id

159

ul li a{

text-decoration: none;

}

ul{

background-color: aqua; height: 50px;

}

a{

line-height:50px ; font-weight: bold; font-size:20px;

}

Step 2:- Create navbar in header.component.html

Profile

Step 3:- Create navbar in home.component.html

<h1>Welcome to Home Page</h1>

Step 4:-Configure route links in app.module.ts

import { ProfileComponent } from './profile/profile.component';

import { HeaderComponent } from './header/header.component';

import { HomeComponent } from './home/home.component';

import { RouterModule,Routes } from '@angular/router';

import { HttpClientModule } from '@angular/common/http'; const

routes:Routes=[

{

path:'',component:HomeComponent

},

{

path:'profile',component:ProfileComponent

},

160

]

imports: [RouterModule.forRoot(routes), HttpClientModule]

Step 5:-Use header selector in the app.component.html along with <router-outlet>

<app-header></app-header>

<router-outlet></router-outlet>

Step6:Profile.component.css

img {

border-radius: 50%;

}

Step7:Profile.component.html

<h1>Welcome to profile page</h1>

<button (click)="getData()">Get Profile</button>

<div *ngIf="data">

<table>

 <tr><th>ID</th>

<td>{{data.id}}</td></tr>

<tr><th>Name</th>

<td>{{data.name}}</td></tr>

<tr><th>Email</th>

<td>{{data.email}}</td></tr>

<tr><th>Phone</th>

<td>{{data.phone}}</td></tr>

</table>

</div>

Step8:Profile.component.ts

import { Component } from '@angular/core';

import { HttpClient} from '@angular/common/http';

@Component({ selector: 'app-profile',

templateUrl:

161

'./profile.component.

html', styleUrl:

'./profile.component.

css'

})

export class ProfileComponent {

ImagePath:any;

constructor(private http:HttpClient){

this.ImagePath = 'https://static.javatpoint.com/tutorial/angular7/images/angular-7-logo.png';

}

data:any;

getData(){

this.http.get('https://jsonplaceholder.typicode.com/users/1')

.subscribe((data)=>{ this.data=data;

})

}

}

Output:

React JS

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing React

162

Components, Creating Components in React, Data and Data Flow in React, Rendering and Life Cycle

Methods in React, Working with forms in React, integrating third party libraries, Routing in React.

Introduction:-

1. Defination:-

ReactJS is a declarative, efficient, and flexible JavaScript library for building reusable UI components. It is

an open-source, component-based front end library responsible only for the view layer of the application. It

was created by Jordan Walke, who was a software engineer at Facebook. It was initially developed and

maintained by Facebook and was later used in its products like WhatsApp & Instagram. Facebook

developed ReactJS in 2011 in its newsfeed section, but it was released to the public in the month of May

2013.

Today, most of the websites are built using MVC (model view controller) architecture. In MVC

architecture, React is the 'V' which stands for view, whereas the architecture is provided by the

Redux or Flux.

• A ReactJS application is made up of multiple components, each component responsible for

outputting a small, reusable piece of HTML code. The components are the heart of all React

applications. These Components can be nested with other components to allow complex

applications to be built of simple building blocks. ReactJS uses virtual DOM based

mechanism to fill data in HTML DOM. The virtual DOM works fast as it only changes

individual DOM elements instead of reloading complete DOM every time.

• To create React app, we write React components that correspond to various elements. We

organize these components inside higher level components which define the application

structure. For example, we take a form that consists of many elements like input fields,

labels, or buttons. We can write each element of the form as React components, and then we

combine it into a higher-level component, i.e., the form component itself. The form

components would specify the structure of the form along with elements inside of it.

 2. why learn ReactJS?

• Today, many JavaScript frameworks are available in the market(like angular, node), but still,
React came into the market and gained popularity amongst them. The previous frameworks
follow the traditional data

flow structure, which uses the DOM (Document Object Model). DOM is an object which is

created by the browser each time a web page is loaded. It dynamically adds or removes the

data at the back end and when any modifications were done, then each time a new DOM is

created for the same page. This repeated creation of DOM makes unnecessary memory

wastage and reduces the performance of the application.

• Therefore, a new technology ReactJS framework invented which remove this drawback.

ReactJS allows you to divide your entire application into various components. ReactJS still

used the same traditional data flow, but it is not directly operating on the browser's

Document Object Model (DOM) immediately; instead, it operates on a virtual DOM. It

means rather than manipulating the document in a browser after changes to our data, it

resolves changes on a DOM built and run entirely in memory. After the virtual DOM has

been updated, React determines what changes made to the actual browser's DOM. The React

Virtual DOM exists entirely in memory and is a representation of the web browser's DOM.

Due to this, when we write a React component, we did not write directly to the DOM;

instead, we are writing virtual components that react will turn into the DOM.

163

3.React.JS History

Current version of React.JS is V18.0.0 (April 2022). Initial Release to the Public (V0.3.0) was in July

2013.

React.JS was first used in 2011 for Facebook's Newsfeed feature. Facebook Software Engineer, Jordan

Walke, created it.Current version of create-react-app is v5.0.1 (April 2022). create-react-app includes

built tools such as webpack, Babel, and ESLint.

4. Features of React

React offers some outstanding features that make it the most widely adopted library for frontend app

development. Here is the list of those salient features.

• JSX

JSX is a JavaScript syntactic extension. It's a term used in React to describe how the user interface

should seem. You can write HTML structures in the same file as JavaScript code by utilizing JSX.

const name = 'Simplilearn';

const greet = <h1>Hello, {name}</h1>;

The above code shows how JSX is implemented in React. It is neither a string nor HTML. Instead,

it embeds HTML into JavaScript code.

Virtual Document Object Model (DOM)

164

The Virtual DOM is React's lightweight version of the Real DOM. Real DOM manipulation is

substantially slower than virtual DOM manipulation. When an object's state changes, Virtual

DOM updates only that object in the real DOM rather than all of them.

• What is the Document Object Model (DOM)?

Fig: DOM of a Webpage

DOM (Document Object Model) treats an XML or HTML document as a tree structure in which

each node is an object representing a part of the document.

• How do Virtual DOM and React DOM interact with each other?

When the state of an object changes in a React application, VDOM gets updated. It then compares

its previous state and then updates only those objects in the real DOM instead of updating all of

the objects. This makes things move fast, especially when compared to other front-end

technologies that have to update each object even if only a single object changes in the web

application.

• Architecture

In a Model View Controller(MVC) architecture, React is the 'View' responsible for how the app

looks and feels.

MVC is an architectural pattern that splits the application layer into Model, View, and Controller.

The model relates to all data-related logic; the view is used for the UI logic of the application, and

the controller is an interface between the Model and View.

• Extensions

https://www.simplilearn.com/tutorials/programming-tutorial/what-is-xml
https://www.simplilearn.com/tutorials/dot-net-tutorial/mvc-architecture

165

React goes beyond just being a UI framework; it contains many extensions that cover the entire

application architecture. It helps the building of mobile apps and provides server-side rendering.

Flux and Redux, among other things, can extend React.

• Data Binding

Since React employs one-way data binding, all activities stay modular and quick. Moreover, the

unidirectional data flow means that it's common to nest child components within parent components

when developing a React project.

Fig: One-way data binding

• Debugging

Since a broad developer community exists, React applications are straightforward and easy to test.

Facebook provides a browser extension that simplifies and expedites React debugging.

Fig: React Extension

This extension, for example, adds a React tab in the developer tools option within the Chrome web

browser. The tab makes it easy to inspect React components directly.

• Components in React

Components are the building blocks that comprise a React application representing a part of the user

interface.

https://www.simplilearn.com/tutorials/reactjs-tutorial/reactjs-components

166

React separates the user interface into numerous components, making debugging more accessible, and

each component has its own set of properties and functions.

• Single-Page Applications (SPAs)

React is recommended in creating SPAs, allowing smooth content updates without page reloads. Its

focus on reusable components makes it ideal for real-time applications.

Install React JS

How To Install React on Windows

In this section, we’ll guide you through the process of installing React on a Windows

machine. Follow these steps to get started:

1. Step 1: Install Node.js and npm

2. Step 2: Install Create React App

3. Step 3: Create a New React Project

4. Step 4: Go To the Project Directory and Start the Development Server

https://kinsta.com/knowledgebase/install-react/#step-1-install-nodejs-and-npm
https://kinsta.com/knowledgebase/install-react/#step-2-install-create-react-app
https://kinsta.com/knowledgebase/install-react/#step-3-create-a-new-react-project
https://kinsta.com/knowledgebase/install-react/#step-4-go-to-the-project-directory-and-start-the-development-server

167

Step 1: Install Node.js and npm

Before installing React, you need to have Node.js and npm (Node Package Manager)
installed on your system. If you haven’t already installed them, follow these steps:

1. Visit the Node.js download page at: https://nodejs.org/en/download/
2. Download the installer for your Windows system (either the LTS or Current version is

fine, but the LTS version is recommended for most users)
3. To install Node.js and npm, please run the installer and carefully follow the provided

prompts.

After the installation is complete, you can verify that Node.js and npm are installed by opening
a command prompt and running the following commands:

These commands should display the version numbers for Node.js and npm, respectively.

Step 2: Install Create React App

Create React App is a command-line tool that simplifies the process of setting up a new React
project with a recommended project structure and configuration. To install Create React App
globally, open a command prompt and run the following command:

Downloading the Node.Js installer for Windows.

• node –v

• npm -v

• npm install -g create-react-app

 This command installs Create React App on your system, making it available to use in any directory.

Step 3: Create a New React Project

Now that you have Create React App installed, you can use it to create a new React project. To do
this, open a command prompt, go to the directory where you want the project to live, and run the
following command:

https://nodejs.org/en/download/

168

Replace “my-app” with the desired name for your project. Create React App will create a new
directory with the specified name and generate a new React project with a recommended
project structure and configuration.

Step 4: Go To the Project Directory and Start the Development Server

Once the project is created, head over to the project directory by running the following
command in the command prompt:

Replace “my-app” with the name of your project directory. Now, start the development server
by running the following command:

This command launches the development server, which watches for changes to your project
files and automatically reloads the browser when changes are detected.

A new browser window should open with your React application running at
http://localhost:3000/ that looks like this:

Congratulations! You have successfully installed React on your Windows machine and
created a new React project. You can now begin building your user interfaces with React.

• create-react-app my-app

cd my-app

npm start

React has been successfully installed on Windows.

React create-react-app

Starting a new React project is very complicated, with so many build tools. It uses many

dependencies, configuration files, and other requirements such as Babel, Webpack, ESLint before

writing a single line of React code. Create React App CLI tool removes all that complexities and

makes React app simple. For this, you need to install the package using NPM, and then run a few

simple commands to get a new React project.

The create-react-app is an excellent tool for beginners, which allows you to create and run React

http://localhost:3000/

169

project very quickly. It does not take any configuration manually. This tool is wrapping all of the

required dependencies like Webpack, Babel for React project itself and then you need to focus on

writing React code only. This tool sets up the development environment, provides an excellent

developer experience, and optimizes the app for production.

Create React App is a command-line tool that simplifies the process of setting up a new React

project with a recommended project structure and configuration.

Requirements

The Create React App is maintained by Facebook and can works on any platform, for example,

macOS, Windows, Linux, etc. To create a React Project using create-react-app, you need to have

installed the following things in your system.

1. Node version

2. NPM version

Let us check the current version of Node and NPM in the system.

Run the following command to check the Node version in the command prompt.

1. $ node -v

Run the following command to check the NPM version in the command prompt.

1. $ npm -v

 Install React

We can install React using npm package manager by using the following command. There is no

need to worry about the complexity of React installation. The create-react-app npm package

170

Note:-If you've previously installed create-react-app globally, it is recommended that
you uninstall the package to ensure npx always uses the latest version of create-react-
app.

To uninstall, run this command: npm uninstall -g create-react-app.

NOTE: We can combine the above two steps in a single command using npx. The npx(Node Package
eXecute)

is a package runner tool which comes with npm 5.2 and above version.

manager will manage everything, which needed for React project.

 C:\Users\javatpoint> npm install -g create-react-app

Create a new React project

Once the React installation is successful, we can create a new React project using create-react-app

command. Here, I choose "reactproject" name for my project.

 C:\Users\javatpoint> create-react-app reactproject

 C:\Users\javatpoint> npx create-react-app reactproject

The above command will take some time to install the React and create a new project with

the name "reactproject." Now, we can see the terminal as like below.

171

cd my-react-app

npm start

The above screen tells that the React project is created successfully on our system. Now, we need to start

the server so that we can access the application on the browser. Type the following command in the terminal

window.

Run the React Application

Now you are ready to run your first real React

application! Run this command to move to the

my-react-app directory:

Run this command to run the React application my-react-app:

A new browser window will pop up with your newly created React App! If not, open your

browser and type localhost:3000 in the address bar.

The result:

NPM is a package manager which starts the server and access the application at default server http://localhost:3000. Now, we will get the following screen.

Next, open the project on Code editor. Here, I am using Visual Studio Code. Our project's default

http://localhost:3000/

172

structure looks like as below image.

In React application, there are several files and folders in the root directory. Some of them are as

follows:

1. node_modules: It contains the React library and any other third party libraries needed.

2. public: It holds the public assets of the application. It contains the index.html where React

will mount the application by default on the <div id="root"></div> element.

3. src: It contains the App.css, App.js, App.test.js, index.css, index.js, and serviceWorker.js

files. Here, the App.js file always responsible for displaying the output screen in React.

4. package-lock.json: It is generated automatically for any operations where npm package

modifies either the node_modules tree or package.json. It cannot be published. It will be

ignored if it finds any other place rather than the top-level package.

5. package.json: It holds various metadata required for the project. It gives information to

npm, which allows to identify the project as well as handle the project?s dependencies.

6. README.md: It provides the documentation to read about React topics.

Modify the React Application

Now, open the src >> App.js file and make changes which you want to display on the screen. After

making desired changes, save the file. As soon as we save the file, Webpack recompiles the code,

and the page will refresh automatically, and changes are reflected on the browser screen. Now, we

can create as many components as we want, import the newly created component inside the App.js

file and that file will be included in our main index.html file after compiling by Webpack.

Look in the my-react-app directory, and you will find a src folder. Inside the src folder
there is a file called App.js, open it and it will look like this:

 /myReactApp/src/App.js: import logo from './logo.svg';

import './App.css';

173

Example

Replace all the content inside the <div className="App"> with a <h1>

element. See the changes in the browser when you click Save.

Notice that the changes are visible immediately after you save the file, you do not have to reload the
browser!

function App() {

return (

<div className="App">

<header className="App-header">

<p>

Edit <code>src/App.js</code> and save to reload.

</p>

<a

className="App-link" href="https://reactjs.org"

target="_blank"

rel="noopener noreferrer">

Learn React

</header>

</div>

);

}

export default App;

Try changing the HTML content and save the file.

function App()

{

return (

<div className="App">

<h1>Hello World!</h1>

https://reactjs.org/

174

Notice that we have removed the imports we do not need (logo.svg and App.css).

</div>

);

}

export default App;

The result:

Next, if we want to make the project for the production mode, type the following command. This

command will generate the production build, which is best optimized.

1. $ npm build

 React Components

1. What are React Components?

React Components are the building block of React Application. They are the reusable code blocks

containing logics and and UI elements. They have the same purpose as JavaScript functions and

return HTML. Components make the task of building UI much easier.

A UI is broken down into multiple individual pieces called components. You can work on

components independently and then merge them all into a parent component which will be your final

UI.

Components promote efficiency and scalability in web development by allowing developers to

compose, combine, and customize them as needed.

https://www.geeksforgeeks.org/functions-in-javascript/
https://www.geeksforgeeks.org/html-introduction/

175

function demoComponent() {
return (<h1>

Welcome Message!
</h1>);

}

You can see in the below image we have broken down the UI of GeeksforGeeks’s homepage into

individual components.

Components in React return a piece of JSX code that tells what should be rendered on the screen.

Types of Components in React

In React, we mainly have two types of components:

• Functional Components

• Class Components

• Functional Component

Functional components are just like JavaScript functions that accept properties and return a

React element. We can create a functional component in React by writing a JavaScript function.

These functions may or may not receive data as parameters. The below example shows a valid

functional component in React:

Syntax:

Example: Create a function component

called welcome. Javascript

function welcome() {

return <h1>Hello, Welcome to GeeksforGeeks!</h1>;
}

https://www.geeksforgeeks.org/reactjs-functional-components/

176

class Democomponent extends
React.Component { render() {

return <h1>Welcome Message!</h1>;
}

}

class Welcome extends
Component { render() {

return <h1>Hello, Welcome to GeeksforGeeks!</h1>;
}

}

• Class Component

The class components are a little more complex than the functional components. A class

component can show inheritance and access data of other components.

Class Component must include the line “extends React.Component” to pass data from one class

component to another class component. We can use JavaScript ES6 classes to create class-based

components in React.

Syntax:

The below example shows a valid class-based component in React:

Example: Create a class component called

welcome. Javascript

The components we created in the above two examples are equivalent, and we also have stated the

basic difference between a functional component and a class component.

Functional Component vs Class Component

• A functional component is best suited for cases where the component doesn’t need to

interact with other components or manage complex states.

• Functional components are ideal for presenting static UI elements or composing

multiple simple components together under a single parent component.

• While class-based components can achieve the same result, they are generally less efficient

compared to functional components. Therefore, it’s recommended to not use class

components for general use.

Rendering React Components

Rendering Components means turning your component code into the UI(User Interface) that users see

on the screen.

React is capable of rendering user-defined components. To render a component in React we can

initialize an element with a user-defined component and pass this element as the first parameter to

ReactDOM.render() or directly pass the component as the first argument to the

ReactDOM.render() method.

The below syntax shows how to initialize a component to an element:

 const elementName = <ComponentName/>;

In the above syntax, the ComponentName is the name of the user-defined component.

Note: The name of a component should always start with a capital letter. This is done to

differentiate a component tag from an HTML tag.

Example: This example renders a component named Welcome to the

Screen. javascript

https://www.geeksforgeeks.org/reactjs-class-components/
https://www.geeksforgeeks.org/explain-the-purpose-of-render-in-reactjs/
https://www.geeksforgeeks.org/html-tags-a-to-z-list/

177

// Filename - src/index.js:

import React from "react";
import ReactDOM from "react-dom";

// This is a functional component
const Welcome = () => {

return (
<>

<h1>Hello World!</h1>;
</>
)
};

ReactDOM.render(
<Welcome />,
document.getElementById("root")

);

Output: This output will be visible on the http://localhost:3000/ on the browser window.

Explanation:

Let us see step-wise what is happening in the above example:

• We call the ReactDOM.render() as the first parameter.

• React then calls the component Welcome, which returns <h1>Hello World!</h1>; as the result.

• Then the ReactDOM efficiently updates the DOM to match with the returned element and

renders that element to the DOM element with id as “root”.

Components in Components

We can call components inside another component

http://localhost:3000/

178

// Filename - src/index.js:

import React from "react";
import ReactDOM from "react-dom";

const Greet = () => {

return <h1>Hello Geek</h1>
}

// This is a functional component
const Welcome = () => {

return <Greet />;
};

ReactDOM.render(
<Welcome />,
document.getElementById("root")

);

Example:

Javascript

The above code will give the same output as other examples but here we have called the Greet

component inside the Welcome Component.

React State:-

a. What Is ‘State’ in ReactJS?

The state is a built-in React object that is used to contain data or information about the component. A

component’s state can change over time; whenever it changes, the component re-renders. The

change in state can happen as a response to user action or system-generated events and these

changes determine the behavior of the component and how it will render.

b. Creating State Object

Creating a state is essential to building dynamic and interactive components. We can create a state

object within the constructor of the class component.

Example:-

import React from 'react';

import ReactDOM from 'react-dom/client';

class Car extends React.Component { constructor(props) {

super(props);

this.state = {

 brand: "Ford",

model: "Mustang",

color: "red",

year: 1964

};

}

render()

{ return (

<div>

https://www.simplilearn.com/tutorials/reactjs-tutorial/reactjs-components

179

<h1>My {this.state.brand}</h1>

<p>

It is a {this.state.color}

{this.state.model} from {this.state.year}.

</p>

</div>

);

}

}

Output:-

Changing the state Object

To change a value in the state object, use the this.setState() method. When a value in the state

object changes, the component will re-render, meaning that the output will change according to the

new value(s).

Example:

Add a button with an onClick event that will change the color

property: import React from 'react';

import ReactDOM from 'react-dom/client';

class Car extends

React.Component {

constructor(props) {

super(props);

 this.state = {

 brand: "Ford",

model: "Mustang",

 color: "red",

year: 1964

};

}

changeColor = () => { this.setState({color: "blue"});

}

render() { return (

<div>

<h1>My {this.state.brand}</h1>

<p>

It is a {this.state.color}

{

this.state.model} from {this.state.year}.

</p>

<button type="button"

onClick={this.changeColor}

180

>Change color</button>

</div>

);

}

}

Const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Car

/>);

Output:-

 React Hook

Hooks were added to React in version 16.8.

Hooks allow function components to have access to state and other React features. Because of this,

class components are generally no longer needed.

Although Hooks generally replace class components, there are no plans to remove classes from React.

What is a Hook?

Hooks allow us to "hook" into React features such as state and lifecycle methods.

Example:

Here is an example of a Hook.

import React, { useState } from "react";

 import ReactDOM from "react-dom/client"; function FavoriteColor() {

const [color, setColor] = useState("red"); return (

<>

<h1>My favorite color is {color}!</h1>

<button type="button"

onClick={() => setColor("blue")}

>Blue</button>

</>

181

When click button it change blue

);

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<FavoriteColor />);

Output:-

You must import Hooks from react.

Here we are using the useState Hook to keep track of the application state. State generally refers to

application data or properties that need to be tracked.

Hook Rules

There are 3 rules for hooks:

• Hooks can only be called inside React function components.
• Hooks can only be called at the top level of a component.
• Hooks cannot be conditional

 Note: Hooks will not work in React class components.

React Props:-

Defination:-

Props stand for "Properties." They are read-only components. It is an object which stores the value

of attributes of a tag and work similar to the HTML attributes. It gives a way to pass data from one

component to other components. It is similar to function arguments. Props are passed to the

component in the same way as arguments passed in a function.

Props are immutable so we cannot modify the props from inside the component. Inside the

components, we can add attributes called props. These attributes are available in the component as

this.props and can be used to render dynamic data in our render method.

When you need immutable data in the component, you have to add props to

reactDom.render() method in the index.js file of your ReactJS project and used it inside the

component in which you need.

Syntax:

// Passing Props

<DemoComponent sampleProp = "HelloProp" />

Syntax:

//Accessing props

this.props.propName;

Example:-

182

import React from 'react';

import ReactDOM from 'react-dom/client';

function Car(props) {

return <h2>I am a { props.brand.model }!</h2>;

}

function Garage() {

const carInfo = { name: "Ford", model:

"Mustang" }; return (

<>

</>

);

}

<h1>Who lives in my garage?</h1>

<Car brand={ carInfo } />

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Garage />);

Output:-

183

React Forms

a. Defination:-

React Forms are the components used to collect and manage the user inputs. These

components includes the input elements like text field, check box, date input, dropdowns

etc. In HTML forms the data is usually handled by the DOM itself but in the case of

React Forms data is handled by the react components.

React forms are the way to collect the user data in a React application. React typically

utilize controlled components to manage form state and handle user input changes

efficiently. It provides additional functionality such as preventing the default behavior of

the form which refreshes the browser after the form is submitted.

In React Forms, all the form data is stored in the React’s component state, so it

can handle the form submission and retrieve data that the user entered. To do

this we use controlled components.

Controlled Components

In simple HTML elements like input tags, the value of the input field is changed

whenever the user type. But, In React, whatever the value the user types we save it in

state and pass the same value to the input tag as its value, so here DOM does not change

its value, it is controlled by react state. These are known as Controlled Components.

b. Creating Form:-

React offers a stateful, reactive approach to build a form. The component rather than the

DOM usually handles the React form. In React, the form is usually implemented by using

controlled components.

There are mainly two types of form input in React.

1. Uncontrolled component

2. Controlled component

1. Uncontrolled component

The uncontrolled input is similar to the traditional HTML form inputs. The DOM itself

handles the form data. Here, the HTML elements maintain their own state that will be

updated when the input value changes. To write an uncontrolled component, you need to

use a ref to get form values from the DOM. In other words, there is no need to write an

event handler for every state update. You can use a ref to access the input field value of the

form from the DOM.

Example

In this example, the code accepts a field username and company name in an uncontrolled

component.

1. import React, { Component } from 'react';

2. class App extends React.Component {

3. constructor(props) {

4. super(props);

https://www.geeksforgeeks.org/html-forms/
https://www.geeksforgeeks.org/what-are-controlled-components-in-reactjs/
https://www.geeksforgeeks.org/what-are-controlled-components-in-reactjs/

184

5. this.updateSubmit = this.updateSubmit.bind(this);

6. this.input = React.createRef();

7. }

8. updateSubmit(event) {

9. alert('You have entered the UserName and CompanyName successfully.');

10. event.preventDefault();

11. }

12. render() {

13. return (

14. <form onSubmit={this.updateSubmit}>

15. <h1>Uncontrolled Form Example</h1>

16. <label>Name:

17. <input type="text" ref={this.input} />

18. </label>

19. <label>

20. CompanyName:

21. <input type="text" ref={this.input} />

22. </label>

23. <input type="submit" value="Submit" />

24. </form>

25.);

26. }

27. }

28. export default App;

Output

When you execute the above code, you will see the following screen.

After filling the data in the field, you get the message that can be seen in the below screen.

185

Controlled Component

In HTML, form elements typically maintain their own state and update it according to the

user input. In the controlled component, the input form element is handled by the

component rather than the DOM. Here, the mutable state is kept in the state property and

will be updated only with setState() method.

Controlled components have functions that govern the data passing into them on every

onChange event, rather than grabbing the data only once, e.g., when you click a submit

button. This data is then saved to state and updated with setState() method. This makes

component have better control over the form elements and data.

A controlled component takes its current value through props and notifies the changes

through callbacks like an onChange event. A parent component "controls" this changes

by handling the callback and managing its own state and then passing the new values as

props to the controlled component. It is also called as a "dumb component."

Example

1. import React, { Component } from 'react';

2. class App extends React.Component {

3. constructor(props) {

4. super(props);

5. this.state = {value: ''};

6. this.handleChange = this.handleChange.bind(this);

7. this.handleSubmit = this.handleSubmit.bind(this);

8. }

9. handleChange(event) {

10. this.setState({value: event.target.value});

11. }

12. handleSubmit(event) {

13. alert('You have submitted the input successfully: ' + this.state.value);

14. event.preventDefault();

15. }

16. render() {

17. return (

18. <form onSubmit={this.handleSubmit}>

186

19. <h1>Controlled Form Example</h1>

20. <label>

21. Name:

22. <input type="text" value={this.state.value} onChange={this.handleChange}

/>

23. </label>

24. <input type="submit" value="Submit" />

25. </form>

26.);

27. }

28. }

29. export default App;

Output:-

When you execute the above code, you will see the following screen.

After filling the data in the field, you get the message that can be seen in the below screen.

(or) controlled form

Submitting Forms:-

We can use the useState Hook to keep track of each inputs value and provide a "single

source of truth" for the entire application.

You can control the submit action by adding an event handler in the onSubmit attribute

for the <form>:

Example:-

import { useState } from

"react"; import ReactDOM

from 'react-dom/client';

187

Example:

function MyForm() {

const [name, setName] = useState("");

const handleSubmit = (event)

=> { event.preventDefault();
alert(`The name you entered was: ${name}`);

}

return (

<form onSubmit={handleSubmit}>
<label>Enter your name:

<input

typ

e="

tex

t"

val

ue

={

na

me

}
onChange={(e) => setName(e.target.value)}

/>
</label>
<input type="submit" />

</form>
)

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<MyForm />);

Output:-

Multiple Input Fields:-

You can control the values of more than one input field by adding a name

attribute to each element. We will initialize our state with an empty object.

To access the fields in the event handler use the event.target.name and

188

event.target.value syntax. To update the state, use square brackets [bracket notation]

around the property name.

import { useState } from

"react"; import ReactDOM

from "react-dom/client";

function MyForm() {

const [inputs, setInputs] = useState({});

const handleChange =

(event) => { const name

= event.target.name;

const value =

event.target.value;
setInputs(values => ({...values, [name]: value}))

}

const handleSubmit = (event)

=> { event.preventDefault();

console.log(inputs);

}

return (
<form onSubmit={handleSubmit}>

<label>Enter your name:
<input

type=

"text"

name

="use

rname

"

value={inputs.usernam

e || ""}

onChange={handleCha

nge}
/>
</label>
<label>Enter your age:

<input

typ

e="

nu

mb

er"

na

me

="a

ge"

value={inputs.age ||

""}

onChange={handleC

189

Note: We use the same event handler function for both input fields, we could write one event
handler for each, but this gives us much cleaner code and is the preferred way in React.

<textarea>

Content of the textarea.

</textarea>

Example:

hange}
/>
</label>
<input type="submit" />

</form>
)

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<MyForm />);

/*

Click F12 and navigate to the

"Console view" to see the result

when you submit the form.
*/

Output:-

 Textarea:-

The textarea element in React is slightly different from ordinary HTML.

In HTML the value of a textarea was the text between the start tag <textarea> and the end tag

</textarea>.

In React the value of a textarea is placed in a value attribute. We'll use the useState Hook
to manage the value of the textarea:

import { useState } from

"react"; import ReactDOM

from "react-dom/client";

function MyForm() {
const [textarea, setTextarea] = useState(

"The content of a textarea goes in the value attribute"

190

HTML:

<select>

<option value="Ford">Ford</option>

<option value="Volvo" selected>Volvo</option>

<option value="Fiat">Fiat</option>

</select>

);

const handleChange = (event)

=> {

setTextarea(event.target.valu

e)

}

return (

<form>
<textarea value={textarea} onChange={handleChange} />

</form>
)

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<MyForm />);

Output:-

Select:-

A drop down list, or a select box, in React is also a bit different from HTML.

in HTML, the selected value in the drop down list was defined with the selected attribute:

191

Example:

A simple select box, where the selected value "Volvo" is initialized in the constructor:

In React, the selected value is defined with a value attribute on the select tag:

import { useState } from

"react"; import ReactDOM

from "react-dom/client";

function MyForm() {

const [myCar, setMyCar] = useState("Volvo");

const handleChange = (event)

=> {

setMyCar(event.target.value)

}

return (
<form>

<select value={myCar} onChange={handleChange}>
<option value="Ford">Ford</option>
<option value="Volvo">Volvo</option>
<option value="Fiat">Fiat</option>

</select>
</form>

)
}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<MyForm />);

By making these slight changes to <textarea> and <select>, React is able to handle all
input elements in the same way.

Output:-

Component Life-Cycle:-

In React, components have a lifecycle that consists of different phases. Each phase has a

set of lifecycle methods that are called at specific points in the component's lifecycle.

These methods allow you to control the component's behavior and perform specific

actions at different stages of its lifecycle.

192

class Clock extends React.Component
{ constructor(props)
{

// Calling the constructor of
// Parent Class React.Component
super(props);

// Setting the initial state
this.state = { date : new
Date() };

}
}

The lifecycle of the component is divided into four phases. They are:

1. Initial Phase

2. Mounting Phase

3. Updating Phase

4. Unmounting Phase

1. Initial Phase

It is the birth phase of the lifecycle of a ReactJS component. Here, the component

starts its journey on a way to the DOM. In this phase, a component contains the

default Props and initial State. These default properties are done in the constructor

of a component. The initial phase only occurs once and consists of the following

methods.

Example:-

2. Mounting

Mounting means putting elements into the DOM.

React has four built-in methods that gets called, in this order, when mounting a component:

• constructor()

• getDerivedStateFromProps()

• render()

• componentDidMount()

The render() method is required and will always be called, the others are optional and

will be called if you define them.

• Constructor:-

Method to initialize state and bind methods. Executed before the component is

mounted.

Example:-

import React from 'react';

193

import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);
this.state = {favoritecolor: "red"};

}

render() { return (
<h1>My Favorite Color is {this.state.favoritecolor}</h1>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

/>);

Output:-

My Favorite Color is red

• Static getDerivedStateFromProps:

Used for updating the state based on props. Executed before every render.

Example:-
import React from 'react';
import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);
this.state = {favoritecolor: "red"};

}

static getDerivedStateFromProps(props, state) { return {favoritecolor: props.favcol };
}

render() { return (
<h1>My Favorite Color is {this.state.favoritecolor}</h1>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

favcol="yellow"/>);

• Render

Responsible for rendering JSX and updating the DOM.

Example:-
import React from 'react';

import ReactDOM from 'react-dom/client'; class Header extends React.Component {

render() { return (
<h1>This is the content of the Header component</h1>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

194

/>);

Output:-

This is the content of the Header component

• componentDidMount

The componentDidMount() method is called after the component is rendered.

This is where you run statements that requires that the component is already placed in the

DOM.

Example:-

import React from 'react';
import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);
this.state = {favoritecolor: "red"};

}

componentDidMount() { setTimeout(() => {
this.setState({favoritecolor: "yellow"})

}, 1000)
}

render() { return (
<h1>My Favorite Color is {this.state.favoritecolor}</h1>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

/>);

Output:- My Favorite Color is yellow

3. Updating

The next phase in the lifecycle is when a component is updated.

A component is updated whenever there is a change in the

component's state or props. React has five built-in methods that

gets called, in this order, when a component is updated:

1. getDerivedStateFromProps()

2. shouldComponentUpdate()

3. render()

4. getSnapshotBeforeUpdate()

195

5. componentDidUpdate()

The render() method is required and will always be called, the others are optional and will

be called if you define them.

• getDerivedStateFromProps:-

getDerivedStateFromProps(props, state) is a static method that is called just before

render() method in both mounting and updating phase in React. It takes updated

props and the current state as arguments.

Example:-

import React from 'react';
import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);
this.state = {favoritecolor: "red"};

}

static getDerivedStateFromProps(props, state)

 { return {favoritecolor: props.favcol };
}

changeColor = () => { this.setState({favoritecolor: "blue"});
}

render() { return (
<div>
<h1>My Favorite Color is {this.state.favoritecolor}</h1>
<button type="button" onClick={this.changeColor}>Change color</button>
</div>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

favcol="yellow" />);

/*

This example has a button that changes the favorite color to blue, but since the

getDerivedStateFromProps() method is called,the favorite color is still rendered as yellow

(because the method updates the state with the color from the favcol attribute).
*/

Output:-

• shouldComponentUpdate:-

In the shouldComponentUpdate() method you can return a Boolean value that specifies

whether React should continue with the rendering or not.

196

The default value is true.

Example:-

import React from 'react';

import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);
this.state = {favoritecolor: "red"};

}

shouldComponentUpdate() {

return true;
}

changeColor = () => { this.setState({favoritecolor: "blue"});

}

render() { return (
<div>
<h1>My Favorite Color is {this.state.favoritecolor}</h1>
<button type="button" onClick={this.changeColor}>Change color</button>
</div>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

/>);

Output:-

Fig.Before updation

Fig.After updation

Note:-if shouldcomponent is return false means no execution.

• getSnapshotBeforeUpdate:-

In the getSnapshotBeforeUpdate() method you have access to the props and state before

the update, meaning that even after the update, you can check what the values were

before the update.

If the getSnapshotBeforeUpdate() method is present, you should also include the

componentDidUpdate() method, otherwise you will get an error.

The example below might seem complicated, but all it does is this:

197

When the component is mounting it is rendered with the favorite color "red".

When the component has been mounted, a timer changes the state, and after one second, the

favorite color becomes "yellow".

This action triggers the update phase, and since this component has a

getSnapshotBeforeUpdate() method, this method is executed, and writes a message to

the empty DIV1 element.

Then the componentDidUpdate() method is executed and writes a message in the empty DIV2

element:

Example:-

import React from 'react';

import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);

this.state = {favoritecolor: "red"};
}

componentDidMount() { setTimeout(() => {
this.setState({favoritecolor: "yellow"})

}, 1000)
}

getSnapshotBeforeUpdate(prevProps,prevState)

{

document.getElementById("div1").innerHTML ="Before the update, the favorite was " +

prevState.favoritecolor;
}

componentDidUpdate() { document.getElementById("div2").innerHTML = "The updated

favorite is " + this.state.favoritecolor;
}

render() { return (
<div>
<h1>My Favorite Color is {this.state.favoritecolor}</h1>
<div id="div1"></div>
<div id="div2"></div>
</div>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

/>);

Output:-

198

• componentDidUpdate

The componentDidUpdate method is called after the

component is updated in the DOM. The example below might

seem complicated, but all it does is this:

When the component is mounting it is rendered with the favorite color "red".

When the component has been mounted, a timer changes the state, and the color becomes

"yellow".

This action triggers the update phase, and since this component has a

componentDidUpdate method, this method is executed and writes a message in the empty

DIV element:

Example:-

import React from 'react';
import ReactDOM from 'react-dom/client';

class Header extends React.Component { constructor(props) {
super(props);
this.state = {favoritecolor: "red"};

}

componentDidMount() { setTimeout(() => {
this.setState({favoritecolor: "yellow"})

}, 1000)
}

componentDidUpdate() {

document.getElementById("mydiv").innerHTML = "The updated favorite is " +

this.state.favoritecolor;
}

render() { return (
<div>
<h1>My Favorite Color is {this.state.favoritecolor}</h1>
<div id="mydiv"></div>
</div>

);
}

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Header

/>);

Output:-

199

4. Unmounting

The next phase in the lifecycle is when a component is removed from the DOM, or

unmounting as React likes to call it.

React has only one built-in method that gets called when a component is unmounted:

• componentWillUnmount()

• componentWillUnmount

The componentWillUnmount method is called when the component is about to be removed

from the DOM.

Example:-

import React from 'react';
import ReactDOM from 'react-dom/client';

class Container extends React.Component { constructor(props) {
super(props);
this.state = {show: true};

}

delHeader = ()

=> {

this.setState({

show: false});
}
render() {
let myheader;

if (this.state.show) { myheader = <Child />;
};
return (
<div>
{myheader}

<button type="button" onClick={this.delHeader}>Delete Header</button>
</div>

);
}

}

class Child extends

React.Component {

componentWillUnmount() {

alert("The component named Header is about to be unmounted.");
}

render() { return (

<h1>Hello World!</h1>

);

}

200

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<Container

/>);

Output:-

Fig. Before deleting and after deleting alert messege

Fig.After Deleting data removed

React Redux:-

c. Why Redux?

State transfer between components is pretty messy in React since it is hard to keep track of

which component the data is coming from. It becomes really complicated if users are working

with a large number of states within an application.

Redux solves the state transfer problem by storing all of the states in a single place called

a store. So, managing and transferring states becomes easier as all the states are stored in

the same convenient store. Every component in the application can then directly access

the required state from that store.

https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs

201

d. Defination:-

Redux is an open-source JavaScript library used to manage application state. React uses
Redux for building the user interface. It was first introduced by Dan Abramov and
Andrew Clark in 2015.

React Redux is the official React binding for Redux. It allows React components to read

data from a Redux Store, and dispatch Actions to the Store to update data. Redux helps

apps to scale by providing a sensible way to manage state through a unidirectional data

flow model. React Redux is conceptually simple. It subscribes to the Redux store, checks

to see if the data which your component wants have changed, and re-renders your

component.

Redux was inspired by Flux. Redux studied the Flux architecture and omitted unnecessary

complexity.

e. Redux Architecture

 The components of Redux architecture are explained below.

STORE: A Store is a place where the entire state of your application lists. It manages the

status of the application and has a dispatch(action) function. It is like a brain responsible

for all moving parts in Redux.

ACTION: Action is sent or dispatched from the view which are payloads that can be read

by Reducers. It is a pure object created to store the information of the user's event. It

includes information such as type of action, time of occurrence, location of occurrence,

its coordinates, and which state it aims to change.

REDUCER: Reducer read the payloads from the actions and then updates the store via
the state accordingly. It is a pure function to return a new state from the initial state.

f. Redux Installation

Requirements: React Redux requires React 16.8.3 or later version.

To use React Redux with React application, you need to install the below command.

202

• npm install redux

• npm install react-redux

•

Example Code For Redux Store:-

import

{createStore} from

"redux"; const

initialState={

balance:0, fullName:"", mobile:,

}

function accountReducer(state=initialState,action){

if(action.type==="deposit")

{

return {...state,balance:state.balance+ +action.payload};

}

else if(action.type==="withdraw")

{

return {...state,balance:state.balance- +action.payload};

}

else if(action.type==="mobileUpdate")

{

return {...state,mobile:action.payload};

}

else if(action.type==="nameUpdate")

{

return {...state,fullName:action.payload};

}

else

return state

}

const store=createStore(accountReducer)

console.log(store.getState()); store.dispatch({type:"deposit",payload:1000})

console.log(store.getState());

store.dispatch({type:"withdraw",payload:100})

console.log(store.getState());

store.dispatch({type:"mobileUpdate",payload:8547961256})

console.log(store.getState());

store.dispatch({type:"nameUpdate",payload:"swathi"})

console.log(store.getState());

Output:-

balance:900,

203

fullName:" swathi ", mobile: 8547961256,

g. Example Code:-Creating store and components Accessing data from store

React Redux includes a <Provider /> component, which makes the Redux store available

to the rest of your app components:

• Index.js

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

import { Provider } from 'react-redux';

import store from './store';

import reportWebVitals from './reportWebVitals';

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(

<React.StrictMode>

<Provider store={store}>

<App />

</Provider>

</React.StrictMode>

);

• Rendering form and accountcomponents

• App.js

import Form from "./Forms";

import Account from "./Account"; function App() {

return (<><Form/>

<Account/>

</>

);

}

export default App;

• Creating state Store data

• Store.js

import {createStore} from "redux"; const initialState={

balance:0, fullName:"Anusha", mobile:7854789689,

}

function accountReducer(state=initialState,action){

if(action.type==="deposit")

{

return {...state,balance:state.balance+ +action.payload};

}

204

else if(action.type==="withdraw")

{

return {...state,balance:state.balance- +action.payload};

}

else if(action.type==="mobileUpdate")

{

return {...state,mobile:action.payload};

}

else if(action.type==="nameUpdate")

{

return {...state,fullName:action.payload};

}

else

return state

}

const

store=createStore(accountRed

ucer) export default store;

• Hooks

React Redux provides a pair of custom React hooks that allow your React components to
interact with the Redux store.

useSelector reads a value from the store state and subscribes to updates,

while useDispatch returns the store's dispatch method to let you dispatch actions.

• Account.js

import { useSelector } from "react-redux";

function Account(){

let data= useSelector((state)=>{

return state;

}

)

return <>

<div>

<h1>Account Details</h1>

<h3>{data.balance}</h3>

<h3>{data.fullName}</h3>

<h3>{data.mobile}</h3>

</div>

</>;

}

export default Account;

205

• Form.js

import { useState } from "react";

import { useDispatch } from "react-redux"; function Form(){

let dispatch = useDispatch();

const [amount, setAmount]=useState(""); return <>

<div>

<h1>Form Component</h1>

<input type="number" placeholder="Enter Amount" value={amount}

onChange={(e)=>{

let data=e.target.value; setAmount(data);

}}

/>

<button onClick={()=>{ dispatch({type:"deposit",payload:amount})

}}>change amount</button>

</div>

</>;

}

export default Form;

Output:-

Fig. Before Updating Data

206

Fig. After Updating Data

React Router

What is a React Router?

React Router is a standard library for routing in React. It enables the navigation among

views of various components in a React Application, allows changing the browser URL,

and keeps the UI in sync with the URL. Let us create a simple application to React to

understand how the React Router works. The application will contain three components

the home component, the Blogs component, and the contact component. We will use

React Router to navigate between these components.

Steps to Use React Router

Step 1: Initialize a react project.

npx create-react-app Reactrouterprogram

Step 2: Install react-router in your application write the following command in your terminal

 npm i react-router-dom

Step 3: Importing React Router

 import { BrowserRouter, Routes, Route } from "react-router-dom";

Folder Structure:

https://www.geeksforgeeks.org/react-tutorial/

207

"dependencies": {
"@testing-library/jest-dom":
"^5.17.0", "@testing-library/react":
"^13.4.0", "@testing-library/user-
event": "^13.5.0", "react":
"^18.2.0",
"react-dom": "^18.2.0",
"react-router-dom": "^6.22.1",
"react-scripts": "5.0.1",
"web-vitals": "^2.1.4"

},

The updated dependencies in package.json file.

React Router Components

The Main Components of React Router are:

• BrowserRouter: BrowserRouter is a router implementation that uses the HTML5

history API(pushState, replaceState, and the popstate event) to keep your UI in sync

with the URL. It is the parent component that is used to store all of the other

components.

• Routes: It’s a new component introduced in the v6 and an upgrade of the

component. The main advantages of Routes over Switch are:

o Relative s and s

o Routes are chosen based on the best match instead of being traversed in order.

• Route: Route is the conditionally shown component that renders some UI when

its path matches the current URL.

• Link: The link component is used to create links to different routes and implement

navigation around the application. It works like an HTML anchor tag.

Implementing React Router

Example: This example shows navigation using react-router-dom to Home,
About and Contact Components.

Within the src folder, we'll create a folder named

pages with several files: src\pages\:

• Layout.js

• Home.js

• Blogs.js

• Contact.js

• NoPage.js

Each file will contain a very basic React component. Now we will use our Router in our

index.js file.

208

Example:-

Use React Router to route to pages based on URL:

• index.js:

import ReactDOM from "react-dom/client";

import { BrowserRouter, Routes, Route } from "react-router-dom";

import Layout from "./pages/Layout";

import Home from "./pages/Home";

import Blogs from "./pages/Blogs";

 import Contact from "./pages/Contact";

import NoPage from "./pages/NoPage";

export default function App() {

return (
<BrowserRouter>
<Routes>
<Route path="/" element={<Layout />}>
<Route index element={<Home />} />
<Route path="blogs" element={<Blogs />} />
<Route path="contact" element={<Contact />} />
<Route path="*" element={<NoPage />} />

</Route>
</Routes>

</BrowserRouter>
);

}

const root = ReactDOM.createRoot(document.getElementById('root')); root.render(<App />);

Example Explained

We wrap our content first with <BrowserRouter>.

Then we define our <Routes>. An application can have multiple <Routes>. Our basic example

only uses one.

<Route>s can be nested. The first <Route> has a path of / and renders the Layout component.

The nested <Route>s inherit and add to the parent route. So the blogs path is

combined with the parent and becomes /blogs.

The Home component route does not have a path but has an index attribute. That

specifies this route as the default route for the parent route, which is /.

Setting the path to * will act as a catch-all for any undefined URLs. This is great for a 404

error page.

Pages / Components

The Layout component has <Outlet> and <Link> elements. The <Outlet> renders the current

route selected.

<Link> is used to set the URL and keep track of browsing history.

209

Anytime we link to an internal path, we will use <Link> instead of .

The "layout route" is a shared component that inserts common content on all pages, such as a

navigation menu.

• Layout.js:

import { Outlet, Link } from

"react-router-dom"; const

Layout = () => {

return (

<>

<nav>

<Link to="/">Home</Link>

<Link to="/blogs">Blogs</Link>

<Link to="/contact">Contact</Link>

</nav>

<Outlet />

</>)

};

export default Layout;

210

• Home.js:

const Home = () => { return <h1>Home</h1>;

};

export default Home;

• Blogs.js:

const Blogs = () => {

return <h1>Blog Articles</h1>;

};

export default Blogs;

• Contact.js:

const Contact = () => {

return <h1>Contact Me</h1>;

};

export default Contact;

• NoPage.js:

const NoPage = () => { return <h1>404</h1>;

};

export default NoPage;

Output:-

Angular vs React JS:-

211

What is React?

React is a front-end JavaScript library that allows you to build user interfaces from reusable

UI components. React uses server-side rendering to provide a flexible and performance-based

solution. It allows developers to create seamless UX and complex UI.

What is Angular?

Angular is an open-source JavaScript front-end framework developed and managed by

Google’s Angular team. Angular is the most popular client-side framework for

developing scalable and high-performing mobile and web apps using HTML, CSS, and

TypeScript. The

latest version of Angular is Angular 13, which offers enterprise-ready web app development

solutions and is widely used by companies for web development.

 Parameters Angular React

 Developed By Google Facebook

 Release Year 2009 2013

 Written In TypeScript JavaScript

 Technology Type Full-fledged MVC framework written in
JavaScriptJavaScript

library (View in MVC; requires Flux to
implement architecture)

 Concept Brings JavaScript into HTML Works

with the real DOM Client-side

rendering

Brings HTML into JavaScript Works
with the virtual DOM Server-side
rendering

 Data Binding Two-way data binding One-way data binding

 Language JavaScript + HTML JavaScript + JSX

 Learning Curve Steep Moderate

 UI Rendering Client/Server-Side Client/Server-Side

 Best Suited For Highly active and interactive web apps Larger apps with recurrent variable
data

 App Structure Fixes and complicated MVC Flexible component-based view

 Dependency Fully supported Not supported

 Injection

 Performance High High

 DOM Type Real Virtual

 Popular Apps IBM, PayPal, Freelancer, Upwork Facebook, Skype, Instagram, Walmart

https://radixweb.com/react-js-introduction
https://radixweb.com/blog/angular-13-features-and-updates
https://selectedfirms.co/companies/web-development/usa

212

UNIT – IV

Node js: Getting Started with Node.js, Using Events, Listeners, Timers, and Call backs in

Node.js, Handling Data I/O in Node.js, Accessing the File System from Node.js,

Implementing Socket Services in Node.js.

Q) Differentiate React and Node

Feature React Node.js

Purpose Front-end library Back-end framework

Language JavaScript JavaScript (with Node.js

runtime)

Architecture Component-based Modular

Execution Environment Browser Server

Dependency

Management

npm npm or Yarn

Development Ecosystem Large and active

community

Large and active community

Q) Explain the significance of NPM.

Node.js provides a package manager called NPM (Node Package

Manager) which is a collection of all open-source JavaScript libraries

213

available in this world. It is the world’s largest software registry

maintained by the Node.js team. It helps in installing any library or

module into your machine.

This can be used to install, update, or uninstall any package through NPM.

1. Installing: npm install <package_name>[@<version>]

This will create a folder node_modules in the current directory and put all

the packages related files inside it. Here @version is optional if you don't

specify the version, the latest version of the module will be

downloaded.

There are two modes of installation through NPM

i. Global installation: If we want to globally install any

package or tool add -g to the command. On installing any

package globally, that package gets added to the PATH so that

we can run it from any location on the computer.

Syntax: npm install -g <package_name>

 Eg. npm install -g express

ii. Local installation: If we do not add -g to your command for

installation, the modules get installed locally,

within a node_modules folder under the root directory.

This is the default mode, as well.

Syntax: npm install

<package_name> Eg. npm install

express

Best Practice: Start all projects with npm init. This will create a new

package.json for you which allows you to add a bunch of metadata to

help others working on the project have the same setup as you.

2. Update: We can also update the packages downloaded from the

registry to keep the code more secure and stable. Any update for

a global package can be done using the following command.

Syntax: npm update -g

<package_name> Eg. npm update

express

3. Uninstall: uninstall the packages :

We can uninstall the package or module, which we downloaded

using the following command.

Syntax: npm uninstall

<package_name>[@<version>] Eg. npm

uninstall express@2.1.0

4. Publishing a module: It is also possible to publish the custom

modules that we created to NPM so that we can make our modules

to be available for others to download.

mailto:express@2.1.0

214

Steps to publish a custom module to NPM:

i. Create a public repository like Github to contain the code for

the module.

ii. Create an account at https://npmjs.org/signup.

iii. Use the npm adduser command from a console prompt to add the

user you created to the environment.

iv. Type in the username, password, and email that you used to

create the account in step ii.

v. Modify the package.json file to include the new repository

information and any keywords that you want made available in

the registry search

vi. Publish the module using the following command from the

application folder in the console: npm publish

The package will be published successfully. To use this module from

npm, just use the "npm install mypackage" command from the

command line and it will get installed.

vii. To remove a package from the registry make sure that you have

added a user with rights to the module to the environment using npm

adduser and then execute the following command:

 npm unpublish <module_name>

5. Security: To perform a quick security check know, we can make use

of npm audit which generates a report on the dependencies of your

application. This report consists of security threats to your

application and can help you fix vulnerabilities by providing npm

commands and recommendations for further troubleshooting.

Syntax: npm audit

Q) What is package.json file? How to create it?

A Node project needs a configuration file named "package.json". It is a

file that contains basic information about the project like the package

name, version as well as more information like dependencies which

specifies the additional packages required for the project.

To create a package.json file, open the Node command prompt and

type the below command.

n

p

m

i

n

i

t

e

https://npmjs.org/signup

215

g

.

{

"name": "my-package",

"version": "1.0.0",

"description": "A simple Node.js package for performing

 basic math operations.",

"main":

"index.js",

"scripts":

{

"test": "echo \"Error: no test specified\" && exit 1"

},

"keywords": [

"node",

"math",

"packag

e"

],

"author": "Your

Name", "license":

"MIT"

}

Q) Explain about censorify module in node.js

The censored words are replaced with **** and that the new censored word

gloomy is added to the censorify module instance censor.

Install the module censorify using: npm install

censorify. var censor = require("censorify");

console.log(censor.getCensoredWords());

console.log(censor.censor("Some very sad, bad and mad

text.")); censor.addCensoredWord("gloomy");

console.log(censor.getCensoredWords());

console.log(censor.censor("A very gloomy day."))

Output:

D:\PVP\MWA\Lab\NodeDemo> node

Censor.js ['sad', 'bad', 'mad']

Some very ****, **** and

**** text. ['sad', 'bad',

'mad', 'gloomy']

A very **** day.

Q) Explain how to create modules in node.js with an example.

A module can contain functions, classes, objects, or any other piece of

code that can be shared between different parts of an application.

Node.js has a built-in module system that allows you to create and

use modules. A module can be defined in a separate file, and can be

loaded into other parts of the application using the require() function.

216

Eg.

calc.js:

exports.add = (a, b) => {

console.log("Add Result:",

a + b);

};

exports.subtract = (a, b) => {

console.log("Sub Result:", a -

b);

};

demo.js:

const myCalculator = require("./calc");

myCalculator.add(1, 2);

myCalculator.subtract(3, 2);

Here, the functions are exported using exports object in calc.js and

require() function is used in demo.js which loads the module calc.

Output:

D:\PVP\MWA\Lab\NodeDemo> node

demo.js Add Result: 3

Sub Result: 1

Q) Explain how to write data to console in Node.js

One of the most useful modules in Node.js during the

development process is the console module. This module provides a lot

of functionality when writing debug and information statements to the

console. The console module allows you to control output to the

console, implement time delta output, and write tracebacks and

assertions to the console.

217

218

Q) Explain Event Handling mechanism in Node.js

Node is used to build the back-end of web applications and provides an event-

driven, non-blocking I/O model that makes it highly efficient for handling large

amounts of data.

The Node.js event model does things differently from traditional event

model. Instead of executing all the work for each request on individual threads,

work is added to an event queue and then picked up by a single thread running an

event loop. The event loop grabs the top item in the event queue, executes it, and

then grabs the next item. When executing code that is no longer live or has

blocking I/O, instead of calling the function directly, the function is added to the

event queue along with a callback that is executed after the function completes.

When all events on the Node.js event queue have been executed, the Node

application terminates.

Fig. Event Handling in Node.js

We can then use the event model to schedule work on the event queue. In Node.js

applications, work is scheduled on the event queue by passing a callback function

using one of these methods:

• Make a call to one of the blocking I/O library calls such as writing to a file

or connecting to a database.

• Add a built-in event listener to a built-in event such as an http.request or

219

server.connection.

• Create own event emitters and add custom listeners to them.

• Use the process.nextTick option to schedule work to be picked up on the

next cycle of the event loop.

• Use timers to schedule work to be done after a particular amount of

time or at periodic intervals.

Eg. Create any custom event as an example.

Q) Explain how to schedule/add work to Event Queue using Timers.

There are three types of timers you can implement in Node.js: timeout, interval,

and immediate.

i. Delaying Work with Timeouts

• Timeout timers are used to delay work for a specific amount of time. When

that time expires, the callback function is executed and the timer goes away

• Timeout timers are created using the setTimeout(callback, delayMilliSeconds,

[args]) method built into Node.js.

When you call setTimeout(), the callback function is executed after

delayMilliSecondsexpires.

For example, the following executes myFunc() after 1 second:

setTimeout(myFunc, 1000);

The setTimeout() function returns a timer object ID. You can pass this ID to

clearTimeout(timeoutId) at any time before the delayMilliSeconds expires to cancel

the timeout function.

Eg. Implementing a series of timeouts at various

intervals

Timer1.js

function simpleTimeout(consoleTimer){

console.timeEnd(consoleTimer);

}

console.time("twoSecond");

setTimeout(simpleTimeout, 2000, twoSecond");

console.time("oneSecond");

setTimeout(simpleTimeout, 1000, "oneSecond"); console.time("fiveSecond");

setTimeout(simpleTimeout, 5000, "fiveSecond"); console.time("50MilliSecond");

setTimeout(simpleTimeout, 50, "50MilliSecond");

• The console.time() method starts a timer you can use to track how long an

operation takes. You give each timer a unique name, and may have up to

220

10,000 timers running on a given page.

• When you call console.timeEnd() with the same name, the browser will output

the time, in milliseconds, that elapsed since the timer was started.

Output:

C:\Program Files\nodejs\node.exe .\Timer1.js

50MilliSecond: 50.341064453125 ms 50MilliSecond:

50.751ms

oneSecond: 1015.48388671875 ms

oneSecond: 1.016s

twoSecond: 2014.297119140625 ms twoSecond:

2.014s

fiveSecond: 5008.2470703125 ms

fiveSecond: 5.009s

ii. Performing Periodic Work with Intervals

• Interval timers are used to perform work on a regular delayed interval.

When the delay time expires, the callback function is executed and is then

rescheduled for the delay interval again.

• Interval timers are created using the

setInterval(callback,delayMilliSeconds, [args]) method built into Node.js.

• When you call setInterval(), the callback function is executed every interval

after

delayMilliSeconds has expired. For example, the following executes

myFunc() every second:

setInterval(myFunc, 1000);

Eg. Timer2.js

var x=0, y=0, z=0;

function displayValues(){

console.log("X=%d; Y=%d; Z=%d", x, y, z);

}

function updateX(){

x += 1;

}

function updateY(){

y += 1;

}

function updateZ(){

z += 1;

displayValues();

}

setInterval(updateX, 500);

setInterval(updateY, 1000);

setInterval(updateZ, 2000);

Output:

https://developer.mozilla.org/en-US/docs/Web/API/console/timeEnd
https://developer.mozilla.org/en-US/docs/Web/API/console/timeEnd

221

C:\Program Files\nodejs\node.exe .\Timer2.js X=3;

Y=1; Z=1

X=7; Y=3; Z=2

X=11; Y=5; Z=3

X=15; Y=7; Z=4

X=19; Y=9; Z=5

X=23; Y=11; Z=6

X=27; Y=13;

Z=7

iii. Performing Immediate Work with an Immediate Timer

• Immediate timers are used to perform work on a function as soon as the

I/O event callbacks are executed, but before any timeout or interval events are

executed. This allows you to schedule work to be done after the current

events in the event queue are completed.

• Immediate timers are created using the

setImmediate(callback,[args])method built into Node.js. When you call

setImmediate(), the callback function is placed on the event queue and popped

off once for each iteration through the eventqueue loop after I/O events have a

chance to be called

iv. Using nextTick to Schedule Work

• A useful method of scheduling work on the event queue is the

process.nextTick(callback) function. This function schedules work to be run

on the next cycle of the event loop. Unlike the setImmediate() method,

nextTick() executes before the I/O events are fired.

• This can result in starvation of the I/O events, so Node.js limits the number

of nextTick() events that can be executed each cycle through the event

queue by the value of process.maxTickDepth, which defaults to 1000.

Eg. Timer3.js

var fs = require("fs");

fs.stat("nexttick.js", function(){

console.log("nexttick.js Exists");

});

setImmediate(function(){

console.log("Immediate Timer 1 Executed");

});

setImmediate(function(){ console.log("Immediate

Timer 2 Executed");

});

process.nextTick(function(){

console.log("Next Tick 1 Executed");

});

process.nextTick(function(){

222

console.log("Next Tick 2 Executed");

});

Output:

C:\Program Files\nodejs\node.exe .\Timer3.js Next

Tick 1 Executed

Next Tick 2 Executed

Immediate Timer 1 Executed

Immediate Timer 2 Executed

nexttick.js Exists

v. Dereferencing Timers from the Event Loop

Often we do not want timer event callbacks to continue to be scheduled

when they are the only events left in the event queue.

The unref() function available in the object returned by setInterval and

setTimeout allows us to notify the event loop to not continue when these

are the only events on the queue.

Eg.

myInterval = setInterval(myFunc);

myInterval.unref();

If for some reason later do not want the program to terminate if the interval

function is the only event left on the queue, you can use the ref() function

to rereference it: myInterval.ref();

Q) Explain how to create a custom event in Node.js

In Node.js, events are a core concept that allows applications to respond to

different types of actions or changes that occur within the application. An event is

essentially a signal that something has happened, such as a user clicking a button,

a file being read or written, or a network connection being established.

Event listeners are functions that are registered to listen for and respond to

specific events. When an event occurs, all registered event listeners for that event are

executed in the order they were registered. Event listeners can be added or removed

dynamically, and multiple event listeners can be registered for the same event.

Events are emitted using an EventEmitter object. This object is included in the

events module. The emit(eventName, [args]) function triggers the eventName event

and includes any arguments provided.

The following code snippet shows how to implement a simple event emitter: var

events = require('events');

var emitter = new events.EventEmitter();

emitter.emit("simpleEvent");

Adding Event Listeners to Objects

• addListener(eventName, callback): Attaches the callback

function to the object’s listeners. Every time the eventName event is triggered, the

callback function is placed in the event queue to be executed.

• .on(eventName, callback): Same as .addListener().

223

• .once(eventName, callback): Only the first time the eventName event is

triggered, the callback function is placed in the event queue to be executed.

Removing Listeners from Objects:

• .listeners(eventName): Returns an array of listener functions attached to the

eventName event.

• .setMaxListeners(n): Triggers a warning if more than n listeners are

added to an EventEmitter object. The default is 10.

• .removeListener(eventName, callback): Removes the callback

function from the eventName event of the EventEmitter object.

Eg. 1:

var events = require('events');

var eventEmitter = new events.EventEmitter();

//Create an event handler: var

welcome = function () {

console.log('Welcome to pvpsit');

}

var bye = function () { console.log('Good

bye to pvpsit');

}

//Assign the eventhandler to an event:

eventEmitter.on('greet', welcome);

eventEmitter.on('greet', bye);

//Fire the 'greet' event: eventEmitter.emit('greet');

var listener_count = eventEmitter.listenerCount('greet'); console.log(listener_count + "

Listner(s) listening to greet event");

// Remove the binding of listner bye function

eventEmitter.removeListener('greet', bye);

console.log("listener bye removed..");

Output:

node Event_Demo.js

Welcome to pvpsit

Good bye to pvpsit

2 Listner(s) listening to greet event listener

bye removed..

Eg. 2. Event1.js

224

var events = require('events');

function Account() {

this.balance = 0;

events.EventEmitter.call(this);

this.deposit = function(amount){

this.balance += amount;

this.emit('balanceChanged');

};

this.withdraw = function(amount){ this.balance

-= amount; this.emit('balanceChanged');

};

}

Account.prototype. proto = events.EventEmitter.prototype;

function displayBalance(){

console.log("Account balance: $%d", this.balance);

}

function checkOverdraw()

{ if (this.balance < 0){

console.log("Account overdrawn!!!");

}

}

function checkGoal(acc, goal){

if (acc.balance > goal){

console.log("Goal

Achieved!!!");

}

}

var account = new Account();

account.on("balanceChanged", displayBalance);

account.on("balanceChanged", checkOverdraw);

account.on("balanceChanged", function(){

checkGoal(this, 1000);

});

account.deposit(220); account.deposit(320);

account.deposit(600);

account.withdraw(1200);

Output:

C:\Program Files\nodejs\node.exe .\Event1.js Account

balance: $220

Account balance: $540

Account balance: $1140

Goal Achieved!!!

Account balance: $-60

Account overdrawn!!!

225

Q) What is a callback? Explain different types of callbacks with

suitable examples.

Callback: A callback is a function or piece of code that is passed as an argument to

another function, with the intention of being called at some point during the execution of

that function or method. A callback function can be defined with or without parameters.

Eg.

function sum(a, b, callback) {

let result = a + b;

callback();

console.log(result)

}

function logResult()

{

 console.log('The sum is:');

}

sum(2, 3, logResult);

Output:

node callback0.js

The sum is:

5

Callback with parameters:

Eg. 1:

function add(a, b, callback) {

let result = a + b;

callback(result);

}

function logResult(sum) {

console.log('The sum is %d',sum);

}

add(2, 3, logResult);

Output:

node callback1.0.js

The sum is 5

Eg. 2:

var events = require('events');

function CarShow() {

events.EventEmitter.call(this);

this.seeCar = function(make){

this.emit('sawCar', make);

};

}

CarShow.prototype. proto = events.EventEmitter.prototype;

var show = new CarShow();

function logCar(make){

226

console.log("Saw a " + make);

}

function logColorCar(make, color){

console.log("Saw a %s %s", color, make);

}

show.on("sawCar", logCar);

show.on("sawCar", function(make){

var colors = ['red', 'blue', 'black'];

var color = colors[Math.floor(Math.random()*3)];

logColorCar(make, color);

});

show.seeCar("Ferrari"); show.seeCar("Porsche");

show.seeCar("Bugatti");

show.seeCar("Lamborghini"); show.seeCar("Aston

Martin");

Output:

node callback1.js

Saw a Ferrari

Saw a black Ferrari

Saw a Porsche

Saw a red Porsche

Saw a Bugatti

Saw a red Bugatti

Saw a Lamborghini Saw

a red Lamborghini Saw a

Aston Martin Saw a red

Aston Martin

Closure callback: In Node.js, a closure callback is a function that has access to variables

in its parent function scope, even after the parent function has returned. This is achieved

through closure, which allows a function to "remember" its lexical scope.

Eg. 1:

function counter() {

let count = 0;

const incrementCount = function() {

count++;

console.log(`Count is now ${count}`);

};

return incrementCount;

}

const callback = counter();

callback(); // Output: 'Count is now 1' callback();

// Output: 'Count is now 2'

Output:

node callback2.0.js

Count is now 1 Count

is now 2

227

Eg.2:

function logCar(logMsg, callback){

process.nextTick(function() {

callback(logMsg);

});

}

var cars = ["Ferrari", "Porsche", "Bugatti"]; for

(var idx in cars){

var message = "Saw a " + cars[idx];

logCar(message, function(){ console.log("Normal Callback: " + message);

});

}

for (var idx in cars){

var message = "Saw a " + cars[idx];

(function(msg){

logCar(msg, function(){ console.log("Closure

Callback: " + msg);

});

})(message);

}

Output:

node callback2.js

Normal Callback: Saw a Bugatti

Normal Callback: Saw a Bugatti

Normal Callback: Saw a Bugatti

Closure Callback: Saw a Ferrari

Closure Callback: Saw a Porsche

Closure Callback: Saw a Bugatti

The second loop also iterates over the cars array, but it uses a closure to

pass the log message to the callback function.

Chained Callback: A chained callback is a series of callback functions that are

executed one after another in a sequence. The output of one callback function is passed as

input to the next callback function in the chain. function add(a, b, callback) {

let sum = a + b;

callback(sum);

}

function square(num, callback) { let

result = num * num;

callback(result);

}

function logResult(result) { console.log(`The

final result is ${result}`);

}

add(2, 3, function(sum) {

228

square(sum, function(result) {

logResult(result);

});

});

Output:

node callback3.0.js The

final result is 25

Eg. 2:

function logCar(car, callback){

console.log("Saw a %s", car);

if(cars.length){

process.nextTick(function(){

callback();

});

}

}

function logCars(cars){

var car = cars.pop();

logCar(car, function(){

logCars(cars);

});

}

var cars = ["Ferrari", "Porsche", "Bugatti",

"Lamborghini", "Aston Martin"]; logCars(cars);

Output:

node callback3.js

Saw a Aston Martin

Saw a Lamborghini

Saw a Bugatti

Saw a Porsche

Saw a Ferrari

Q) Explain Buffer class in Node.js with an example.

Node provides Buffer class which provides instances to store raw data similar to

an array of integers but corresponds to a raw memory allocation outside the V8

heap. Buffer class is a global class that can be accessed in an application without

importing the buffer module.

var buf1 = new Buffer(100);

var buf2 = new Buffer(100);

var buf3 = new Buffer(26); for

(var i = 0 ; i < 26 ; i++) {

buf3[i] = i + 97;

}

console.log("buffer 3:"+ buf3.toString('ascii'));

len = buf1.write("Welcome to pvpsit");

console.log(" buf1 Octets written : "+ len);

console.log("buffer 1:"+ buf1.toString('utf-8'));

229

len = buf2.write("Welcome to it");

console.log("buf2 Octets written : "+ len); console.log("buffer

2:"+ buf2.toString('utf-8'));

var buf6 = Buffer.concat([buf1,buf2]);

console.log("buffer after concatinating buf1 and buf2: " + buf6.toString());

var buf4 = new Buffer(26) buf3.copy(buf4);

console.log("buffer4 content: " + buf4.toString());

var buf5 = buf4.slice(0,9);

console.log("buf4.slice(0,9): " + buf5.toString()+" and length is "+buf5.length);

var result = buf5.compare(buf4);

if(result < 0) {

console.log(buf4 +" comes after " + buf5);

}else if(result == 0){

console.log(buf4 +" is same as " + buf5);

}else {

console.log(buf4 +" comes before " + buf5);

}

var json = buf5.toJSON(buf5);

console.log(json);

O/P:

PS D:\PVP\MWA\Lab\Files> node Event_Demo.js

Welcome to pvpsit

Good bye to pvpsit

2 Listner(s) listening to greet event listener

bye removed..

PS D:\PVP\MWA\Lab\Files>

* History restored

buffer 3:abcdefghijklmnopqrstuvwxyz buf1

Octets written : 17

buffer 1:Welcome to pvpsit

buf2 Octets written : 13 buffer

2:Welcome to it

buffer after concatinating buf1 and buf2: Welcome to pvpsitWelcome to it buffer4

content: abcdefghijklmnopqrstuvwxyz

buf4.slice(0,9): abcdefghi and length is 9

abcdefghijklmnopqrstuvwxyz comes after abcdefghi

{

type: 'Buffer',

data: [

97, 98, 99, 100,

101, 102, 103, 104,

105

]

}

230

Writing to Buffers Syntax Following is the syntax of the method to write into a Node

Buffer: buf.write(string[, offset][, length][, encoding])

Parameters Here is the description of the parameters used: string - This is the

string data to be written to buffer.

• offset - This is the index of the buffer to start writing at. Default value is 0.

• length - This is the number of bytes to write. Defaults to buffer.length.

• encoding - Encoding to use. 'utf8' is the default encoding.

Return Value This method returns the number of octets written. If there is not

enough space in the buffer to fit the entire string, it will write a part of the string.

Reading from Buffers Syntax Following is the syntax of the method to read data

from a Node Buffer: buf.toString([encoding][, start][, end])

Parameters Here is the description of the parameters used:

• encoding - Encoding to use. 'utf8' is the default encoding.

• start - Beginning index to start reading, defaults to 0.

• end - End index to end reading, defaults is complete buffer.

Return Value This method decodes and returns a string from buffer data encoded

using the specified character set encoding.

Convert Bufferto JSON Syntax Following is the syntax of the method to convert

a Node Buffer into JSON object:

buf.toJSON()

Return Value This method returns a JSON-representation of the Buffer instance.

Concatenate Buffers Syntax Following is the syntax of the method to

concatenate Node buffers to a single Node Buffer:

Buffer.concat(list[, totalLength])

Parameters Here is the description of the parameters used:

• list - Array List of Buffer objects to be concatenated.

• totalLength - This is the total length of the buffers when concatenated.

Return Value This method returns a Buffer instance.

Compare Buffers Syntax Following is the syntax of the method to compare two

Node buffers: buf.compare(otherBuffer);

Parameters Here is the description of the parameters used:

• otherBuffer - This is the other buffer which will be compared with buf.

Return Value Returns a number indicating whether it comes before or after or is

the same as the otherBuffer in sort order.

Copy Buffer Syntax Following is the syntax of the method to copy a node buffer:

buf.copy(targetBuffer[, targetStart][, sourceStart][, sourceEnd]) Parameters Here is the

description of the parameters used:

• targetBuffer - Buffer object where buffer will be copied.

• targetStart - Number, Optional, Default: 0

• sourceStart - Number, Optional, Default: 0

• sourceEnd - Number, Optional, Default: buffer.length

Return Value No return value.

Slice Buffer Syntax Following is the syntax of the method to get a sub- buffer of a node

buffer: buf.slice([start][, end])

Parameters Here is the description of the parameters used:

• start - Number, Optional, Default: 0

231

• end - Number, Optional, Default: buffer.length

Return Value Returns a new buffer which references the same memory as the

old one

Buffer Length Syntax Following is the syntax of the method to get a size of a

node buffer in bytes: buf.length;

Return Value Returns the size of a buffer in bytes.

Q) What are streams? Explain different types of streams with suitable

examples.

Streams are objects that let you read data from a source or write data to a

destination in continuous fashion. In Node.js, there are four types of streams:

• Readable - Stream which is used for read operation.

• Writable - Stream which is used for write operation.

• Duplex - Stream which can be used for both read and write operation.

Each type of Stream is an EventEmitter instance and throws several events at

different instance of times. For example, some of the commonly used events

are:

• data - This event is fired when there is data is available to read.

• end - This event is fired when there is no more data to read.

• error - This event is fired when there is any error receiving or writing data.

• finish - This event is fired when all the data has been flushed to underlying

system.

Eg. Read Stream

var fs = require('fs');

var options = { encoding: 'utf8', flag: 'r' };

var fileReadStream = fs.createReadStream("grains.txt", options);

fileReadStream.on('data', function(chunk) {

console.log('Grains: %s', chunk);

console.log('Read %d bytes of data.', chunk.length);

});

fileReadStream.on("close", function(){

console.log("File Closed.");

});

Eg. Write Stream

var fs = require('fs');

var grains = ['wheat', 'rice', 'oats'];

var options = { encoding: 'utf8', flag: 'w' };

var fileWriteStream = fs.createWriteStream("grains.txt", options);

fileWriteStream.on("close", function(){

console.log("File Closed.");

});

while (grains.length){

var data = grains.pop() + " ";

fileWriteStream.write(data); console.log("Wrote:

%s", data);

232

}

fileWriteStream.end();

var options = { encoding: 'utf8', flag: 'r' };

var fileReadStream = fs.createReadStream("grains.txt", options);

fileReadStream.on('data', function(chunk) {

console.log('Grains: %s', chunk);

console.log('Read %d bytes of data.', chunk.length);

});

Eg. Duplex Stream:

var stream = require('stream'); var

util = require('util');

util.inherits(Duplexer, stream.Duplex);

function Duplexer(opt) {

stream.Duplex.call(this, opt);

this.data = [];

}

Duplexer.prototype._read = function readItem(size) { var

chunk = this.data.shift();

if (chunk == "stop"){

this.push(null);

} else {

if(chunk){

this.push(chunk);

} else {

setTimeout(readItem.bind(this), 500, size);

}

}

};

Duplexer.prototype._write = function(data, encoding, callback) {

this.data.push(data);

callback();

};

var d = new Duplexer(); d.on('data',

function(chunk){

console.log('read: ', chunk.toString());

});

d.on('end', function(){ console.log('Message

Complete');

});

d.write("I think, ");

d.write("therefore "); d.write("I

am."); d.write("Rene

Descartes"); d.write("stop");

Piping is a mechanism where we provide the output of one stream as the input to

another stream. It is normally used to get data from one stream and to pass the

output of that stream to another stream. There is no limit on piping operations.

Eg. To copy data from one file to another:

233

var fs = require("fs");

// Create a readable stream

var readerStream = fs.createReadStream('count.txt');

// Create a writable stream

var writerStream = fs.createWriteStream('c.txt');

// Pipe the read and write operations

// read input.txt and write data to output.txt

readerStream.pipe(writerStream);

console.log("Program Ended");

Chaining is a mechanism to connect the output of one stream to another stream

and create a chain of multiple stream operations. It is normally used with piping

operations.

Eg. Zlib for compressing a file

var fs = require("fs");

var zlib = require('zlib');

// Compress the file input.txt to input.txt.gz

fs.createReadStream('c.txt')

.pipe(zlib.createGzip())

.pipe(fs.createWriteStream('c.txt.gz'));

console.log("File Compressed.");

fs.createReadStream('c.txt.gz')

.pipe(zlib.createGunzip())

.pipe(fs.createWriteStream('c.txt'));

console.log("File Decompressed.");

Q) Write a program in Node.js to count no.of lines, words and characters in a

given file.

const fs = require('fs');

// Function to count lines, words, and characters in a file const

countLinesWordsChars = (file) => {

let lines = 0;

let words = 0;

let chars = 0;

// Create a readable stream from the file

const stream = fs.createReadStream(file, { encoding: 'utf8' });

// Listen for 'data' event, which is emitted whenever data is read from the stream

stream.on('data', (data) => {

// Count lines by counting the number of newline characters lines +=

data.split('\n').length;

// Count words by splitting the data by whitespace characters and filtering out

empty strings

words += data.split(/\s+/).filter(Boolean).length;

234

// Count characters by adding the length of the data

chars += data.length;

});

// Listen for 'end' event, which is emitted when the end of the stream is reached

stream.on('end', () => { console.log(`Number

of lines: ${lines}`); console.log(`Number of

words: ${words}`);

console.log(`Number of characters: ${chars}`);

});

// Listen for 'error' event, which is emitted when an error occurs stream.on('error',

(err) => {

console.error(`Error reading file: ${err}`);

});

};

// Call the function with the file name as argument

countLinesWordsChars('count.txt');

Q) Write a program in Node.js to count no.of vowels, consonants, digits

and special characters in a given file.

const fs = require('fs');

function countChars(filename) {

const vowels = 'aeiouAEIOU';

let vowelCount = 0;

let consonantCount = 0;

let digitCount = 0;

let specialCharCount = 0;

const stream = fs.createReadStream(filename, { encoding: 'utf8' });

stream.on('data', (data) => { for

(const char of data) {

if (char.match(/[a-zA-Z]/)) { if

(vowels.includes(char)) {

vowelCount++;

} else {

consonantCount++;

}

} else if (char.match(/\d/)) {

digitCount++;

} else if (char.match(/\S/)) {

specialCharCount++;

}

}

});

stream.on('end', () => { console.log(`Vowels:

${vowelCount}`);

console.log(`Consonants: ${consonantCount}`);

console.log(`Digits: ${digitCount}`);

235

console.log(`Special Characters: ${specialCharCount}`);

});

stream.on('error', (err) => { console.error(`Error

reading file: ${err}`);

});

}

//reading file from user const

file = process.argv[2]; if (file)

{

countChars(file);

} else {

console.error('Please provide a file name as an argument.');

}

Q) Explain about Node File I/O with suitable examples.

The Node File System (fs) module can be imported using the following

syntax:

var fs = require("fs") Synchronous

vs Asynchronous

Every method in the fs module has synchronous as well as asynchronous forms.

Asynchronous methods take the last parameter as the completion function

callback and the first parameter of the callback function as error.

It is better to use an asynchronous method instead of a synchronous method, as

the former never blocks a program during its execution, whereas the second one

does.

Eg. Asynchronous read and write:

var fs = require('fs');

var fruitBowl = ['apple', 'orange', 'banana', 'grapes'];

function writeFruit(fd){

if (fruitBowl.length){

var fruit = fruitBowl.pop() + " ";

fs.write(fd, fruit, null, null, function(err, bytes){ if

(err){

console.log("File Write Failed.");

} else {

console.log("Wrote: %s %dbytes", fruit, bytes);

writeFruit(fd);

}

});

} else {

fs.close(fd);

}

}

fs.open('fruit.txt', 'w', function(err, fd){

writeFruit(fd);

});

function readFruit(fd, fruits){ var

buf = new Buffer(5); buf.fill();

fs.read(fd, buf, 0, 5, null, function(err, bytes, data)

236

{ if (bytes > 0) {

console.log("read %dbytes", bytes);

fruits += data;

readFruit(fd, fruits);

} else {

fs.close(fd);

console.log ("Fruits: %s", fruits);

}

});

}

fs.open('fruit.txt', 'r', function(err, fd){

readFruit(fd, "");

});

Eg. Synchronous Read and Write

var fs = require('fs');

var veggieTray = ['carrots', 'celery', 'olives']; fd

= fs.openSync('veggie.txt', 'w');

while (veggieTray.length){ veggie

= veggieTray.pop() + " ";

var bytes = fs.writeSync(fd, veggie, null, null); console.log("Wrote

%s %dbytes", veggie, bytes);

}

fs.closeSync(fd);

fd = fs.openSync('veggie.txt', 'r');

var veggies = "";

do {

var buf = new Buffer(5);

buf.fill();

var bytes = fs.readSync(fd, buf, null, 5);

console.log("read %dbytes", bytes);

veggies += buf.toString();

} while (bytes > 0);

fs.closeSync(fd);

console.log("Veg g (to get output shown) ies: " + veggies);

237

Q) Write a program in Node.js to access file system

A. accessing file statistics

var fs = require('fs');

fs.stat('file_stats.js', function (err, stats) { if

(!err){

console.log('stats: ' + JSON.stringify(stats, null, ' '));

console.log(stats.isFile() ? "Is a File" : "Is not a File");

console.log(stats.isDirectory() ? "Is a Folder" : "Is not a Folder");

console.log(stats.isSocket() ? "Is a Socket" : "Is not a Socket");

console.log(stats.isDirectory() ? "Is a Directory" : "Is not a Directory");

stats.isBlockDevice();

stats.isCharacterDevice();

stats.isSymbolicLink(); //only lstat

stats.isFIFO();

}

});

238

b. To list files/directories in a given directory:

var fs = require('fs');

var Path = require('path');

function WalkDirs(dirPath){

console.log(dirPath);

fs.readdir(dirPath, function(err, entries){ for

(var idx in entries){

var fullPath = Path.join(dirPath, entries[idx]);

(function(fullPath){

fs.stat(fullPath, function (err, stats){ if

(stats.isFile()){

console.log(fullPath);

} else if (stats.isDirectory()){

WalkDirs(fullPath);

}

});

})(fullPath);

}

});

}

WalkDirs("../Files");

C. To create a directory:

let fs = require('fs') fs.mkdir("../Files/folderA", function(err){

console.log(err ? "Directory not created" : "Directory created.");

});

D. Listing Files:

fs.readdir(path, callback)

fs.readdirSync(path)

e. Deleting Files:

fs.unlink(path, callback)

239

fs.unlinkSync(path)

eg.

fs.unlink("new.txt", function(err){

console.log(err ? "File Delete Failed" : "File Deleted");

});

F. Truncating Files:

To truncate a file, use one the following fs calls and pass in the number of bytes

you want the file to contain when the truncation completes: fs.truncate(path, len,

callback)

fs.truncateSync(path, len)

The truncateSync(path) returns true or false based on whether the file is

successfully truncated. The asynchronous truncate() call passes an error value to

the callback function if an error is encountered when truncating the file.

Eg.

fs.truncate("new.txt", function(err){

console.log(err ? "File Truncate Failed" : "File Truncated");

});

G. Making and Removing Directories:

fs.mkdir(path, [mode], callback)

fs.mkdirSync(path, [mode])

The mkdirSync(path) returns true or false based on whether the directory is

successfully created. The asynchronous mkdir() call passes an error value to the

callback function if an error is encountered when creating the directory. Eg.

let fs = require('fs')

fs.mkdir("../Files/folderA", function(err){

console.log(err ? "Directory not created" : "Directory created.");

});

Output:

node CreateDir.js

Directory created.

H. Delete Directories:

fs.rmdir(path, callback)

fs.rmdirSync(path)

eg.

let fs = require('fs')

fs.rmdir("../Files/folderA", function(err){

console.log(err ? "Directory not deleted": "Directory deleted.");

});

I. Renaming Files and Directories:

fs.rename(oldPath, newPath, callback)

fs.renameSync(oldPath, newPath)

The oldPath specifies the existing file or directory path, and the newPath

specifies the new name. The renameSync(path) returns true or false based on

whether the file or directory is successfully renamed. The asynchronous rename()

call passes an error value to the callback function if an error is encountered when

renaming the file or directory.

240

Eg.

fs.rename("old.txt", "new.txt", function(err){ console.log(err ? "Rename Failed"

: "File Renamed"); });

fs.rename("testDir", "renamedDir", function(err){ console.log(err ? "Rename Failed"

: "Folder Renamed"); });

J. Watching for File Changes:

the fs module provides a useful tool to watch a file and execute a callback

function when the file changes. This can be useful if you want to trigger events to

occur when a file is modified, but do not want to continually poll from your

application directly. This does incur some overhead in the underlying OS, so you

should use watches sparingly.

fs.watchFile(path, [options], callback)

When a file change occurs, the callback function is executed and passes a current

and previous Stats object.

Eg.

fs.watchFile("log.txt", {persistent:true, interval:5000}, function (curr, prev)

{

console.log("log.txt modified at: " + curr.mtime);

console.log("Previous modification was: " + prev.mtime);

});

Q) Explain Events and Methods available on HTTP ClientRequest and

ServerResponse objects.

241

The http.ClientRequest Object:

The ClientRequest object is created internally when you call http.request() when building

the HTTP client.

To implement a ClientRequest object, you use a call to http.request() using the

following syntax: http.request(options, callback)

242

243

244

The http.ServerResponse Object :

The ServerResponse object is created by the HTTP server internally when a request

event is received. It is passed to the request event handler as the second

argument. You use the ServerRequest object to formulate and send a response to

the client. The ServerResponse implements a Writable stream, so it provides all

the functionality of a Writable stream object. For example, you can use the

write() method to write to it as well as pipe a Readable stream into it to write

data back to the client.

245

246

Q) Implement HTTP Services in Node.js to read user name from user and

greet the user as the response.

index.html:

<!DOCTYPE html>

<html>

<head>

<title>Greeting Form</title>

</head>

<body>

<form action="/greet" method="POST">

<label for="name">Enter your name:</label>

<input type="text" id="name" name="name">

<button type="submit">Submit</button>

</form>

</body>

</html>

index.js

const http = require('http'); const

fs = require('fs'); const path =

require('path');

const server = http.createServer((req, res) =>

{ if (req.method === 'GET' && req.url === '/') {

// Read the HTML file

fs.readFile(path.join(dirname, 'index.html'), 'utf8', (err, data) =>

 { if (err) {

res.statusCode = 500; res.end('Internal

Server Error');

} else {

res.setHeader('Content-Type', 'text/html');

res.end(data);

}

});

} else if (req.method === 'POST' && req.url === '/greet')

{ let data = '';

// Collect the data from the request req.on('data',

chunk => {

data += chunk;

});

// Process the collected data

req.on('end', () => {

const name = new URLSearchParams(data).get('name');

 const greeting = `Hello, ${name}!`;

res.setHeader('Content-Type', 'text/plain');

res.statusCode = 200; res.end(greeting);

});

} else {

247

res.statusCode = 404;

res.end('Not Found');

}

});

// Start the server on port 3000 server.listen(3000, ()

=> {

console.log('Server listening on port 3000');

});

O/P:

node index.js

Server listening on port 3000

248

UNIT - V

MongoDB:

Understanding NoSQL and MongoDB, Getting Started with MongoDB, Getting Started with MongoDB and

Node.js, Manipulating MongoDB Documents from Node.js, Accessing MongoDB from Node.js, Using

Mongoose for Structured Schema and Validation, Advanced MongoDB Concepts.

Introduction:-

 Data:-

Data is information such as facts and numbers used to analyze something or make decisions.

Computer data is information in a form that can be processed by a computer.

Database:-

A database is an organized collection of structured information, or data, typically stored electronically in a

computer system. A database is usually controlled by a database management system (DBMS).

NoSQL:-

A database is a collection of structured data or information which is stored in a computer system and

can be accessed easily. A database is usually managed by a Database Management System (DBMS).

NoSQL is a non-relational database that is used to store the data in the nontabular form. NoSQL stands for
Not only SQL. The main types are documents, key-value, wide-column, and graphs.

Types of NoSQL Database:

• Document-based databases

• Key-value stores

• Column-oriented databases

• Graph-based databases

1. Document-Based Database:

The document-based database is a nonrelational database. Instead of storing the data in rows and

columns (tables), it uses the documents to store the data in the database. A document database stores

data in JSON, BSON, or XML documents.

Documents can be stored and retrieved in a form that is much closer to the data objects used in

applications which means less translation is required to use these data in the applications. In the

249

Document database, the particular elements can be accessed by using the index value that is assigned

for faster querying.

Collections are the group of documents that store documents that have similar contents. Not all the

documents are in any collection as they require a similar schema because document databases have a

flexible schema.

Key features of documents database:

• Flexible schema: Documents in the database has a flexible schema. It means the

documents in the database need not be the same schema.

• Faster creation and maintenance: the creation of documents is easy and minimal

maintenance is required once we create the document.

• No foreign keys: There is no dynamic relationship between two documents so documents

can be independent of one another. So, there is no requirement for a foreign key in a document

database.

• Open formats: To build a document we use XML, JSON, and others.

2. Key-Value Stores:

A key-value store is a nonrelational database. The simplest form of a NoSQL database is a key- value

store. Every data element in the database is stored in key-value pairs. The data can be retrieved by

using a unique key allotted to each element in the database. The values can be simple data types like

strings and numbers or complex objects.

A key-value store is like a relational database with only two columns which is the key and the value.

Key features of the key-value store:

• Simplicity.

• Scalability.

• Speed.

3.Column Oriented Databases:

A column-oriented database is a non-relational database that stores the data in columns instead of

rows. That means when we want to run analytics on a small number of columns, you can read those

columns directly without consuming memory with the unwanted data.

Columnar databases are designed to read data more efficiently and retrieve the data with greater

speed. A columnar database is used to store a large amount of data. Key features of columnar

oriented database:

• Scalability.

• Compression.

• Very responsive.

4. Graph-Based databases:

Graph-based databases focus on the relationship between the elements. It stores the data in the form

of nodes in the database. The connections between the nodes are called links or relationships.

Key features of graph database:

• In a graph-based database, it is easy to identify the relationship between the data by using

the links.

• The Query’s output is real-time results.

250

• The speed depends upon the number of relationships among the database elements.

• Updating data is also easy, as adding a new node or edge to a graph database

is a straightforward task that does not require significant schema changes.

 What is MongoDB?

MongoDB is a document-oriented NoSQL database system that provides high scalability,

flexibility, and performance. Unlike standard relational databases, MongoDB stores data in

a JSON document structure form. This makes it easy to operate with dynamic and unstructured data

and MongoDB is an open-source and cross-platform database System.

Why Use MongoDB?

Document Oriented Storage − Data is stored in the form of JSON documents.

• Index on any attribute: Indexing in MongoDB allows for faster data retrieval by

creating a searchable structure on selected attributes, optimizing query performance.

• Replication and high availability: MongoDB’s replica sets ensure data redundancy

by maintaining multiple copies of the data, providing fault tolerance and continuous

availability even in case of server failures.

• Auto-Sharding: Auto-sharding in MongoDB automatically distributes data across

multiple servers, enabling horizontal scaling and efficient handling of large datasets.

• Big Data and Real-time Application: When dealing with massive datasets or

applications requiring real-time data updates, MongoDB’s flexibility and scalability prove

advantageous.

• Rich queries: MongoDB supports complex queries with a variety of operators,

allowing you to retrieve, filter, and manipulate data in a flexible and powerful manner.

• Fast in-place updates: MongoDB efficiently updates documents directly in their

place, minimizing data movement and reducing write overhead.

• Professional support by MongoDB: MongoDB offers expert technical support

and resources to help users with any issues or challenges they may encounter during their

database operations.

•

Internet of Things (IoT) Applications: Storing and analyzing sensor data with its diverse formats

often aligns well with MongoDB’s document structure.

Where do we use MongoDB?

MongoDB is preferred over RDBMS in the following scenarios:

• Big Data: If you have huge amount of data to be stored in tables, think of MongoDB

before RDBMS databases. MongoDB has built-in solution for partitioning and sharding your

database.

• Unstable Schema: Adding a new column in RDBMS is hard whereas MongoDB is

schema-less. Adding a new field does not effect old documents and will be very easy.

• Distributed data Since multiple copies of data are stored across different

servers, recovery of data is instant and safe even if there is a hardware failure.

Language Support by MongoDB:

MongoDB currently provides official driver support for all popular programming languages like C,
C++, Rust, C#, Java, Node.js, Perl, PHP, Python, Ruby, Scala, Go, and Erlang.

https://www.geeksforgeeks.org/json/

251

Features of MongoDB –

• Schema-less Database: It is the great feature provided by the MongoDB. A Schema-less

database means one collection can hold different types of documents in it. Or in other words, in

the MongoDB database, a single collection can hold multiple documents and these documents

may consist of the different numbers of fields, content, and size. It is not

necessary that the one document is similar to another document like in the relational databases.

Due to this cool feature, MongoDB provides great flexibility to databases.

• Document Oriented: In MongoDB, all the data stored in the documents instead of tables

like in RDBMS. In these documents, the data is stored in fields(key-value pair) instead of rows

and columns which make the data much more flexible in comparison to RDBMS. And each

document contains its unique object id.

• Indexing: In MongoDB database, every field in the documents is indexed with primary

and secondary indices this makes easier and takes less time to get or search data from the pool of

the data. If the data is not indexed, then database search each document with the specified query

which takes lots of time and not so efficient.

• Scalability: MongoDB provides horizontal scalability with the help of sharding.

Sharding means to distribute data on multiple servers, here a large amount of data is partitioned

into data chunks using the shard key, and these data chunks are evenly distributed across shards

that reside across many physical servers. It will also add new machines to a running database.

• Replication: MongoDB provides high availability and redundancy with the help of

replication, it creates multiple copies of the data and sends these copies to a different server so

that if one server fails, then the data is retrieved from another server.

• Aggregation: It allows to perform operations on the grouped data and get a single result

or computed result. It is similar to the SQL GROUPBY clause. It provides three different

aggregations i.e, aggregation pipeline, map-reduce function, and single-purpose aggregation

methods

• High Performance: The performance of MongoDB is very high and data persistence

as compared to another database due to its features like scalability, indexing, replication, etc.

Advantages of MongoDB :

• It is a schema-less NoSQL database. You need not to design the schema of the

database when you are working with MongoDB.

• It does not support join operation.

• It provides great flexibility to the fields in the documents.

• It contains heterogeneous data.

• It provides high performance, availability, scalability.

• It supports Geospatial efficiently.

• It is a document oriented database and the data is stored in BSON documents.

• It also supports multiple document ACID transition(string from MongoDB 4.0).

• It does not require any SQL injection.

• It is easily integrated with Big Data Hadoop

Disadvantages of MongoDB :

• It uses high memory for data storage.

• You are not allowed to store more than 16MB data in the documents.

• The nesting of data in BSON is also limited you are not allowed to nest data more than

100 levels.

How MongoDB works ?

252

MongoDB is an open-source document-oriented database. It is used to store a larger amount of data

and also allows you to work with that data. MongoDB is not based on the table-like relational

database structure but provides an altogether different mechanism for storage and retrieval of data,

that’s why known as NoSQL database. Here, the term ‘NoSQL’ means ‘non- relational’. The format

of storage is called BSON (similar to JSON format).

Now, let’s see how actually this MongoDB works? But before proceeding to its working, first, let’s

discuss some important parts of MongoDB –

• Drivers: Drivers are present on your server that are used to communicate with

MongoDB. The drivers support by the MongoDB are C, C++, C#, and .Net, Go, Java, Node.js,

Perl, PHP, Python, Motor, Ruby, Scala, Swift, Mongoid.

• MongoDB Shell: MongoDB Shell or mongo shell is an interactive JavaScript interface

for MongoDB. It is used for queries, data updates, and it also performs administrative

operations.

• Storage Engine: It is an important part of MongoDB which is generally used to manage

how data is stored in the memory and on the disk. MongoDB can have multiple search engines.

You are allowed to use your own search engine and if you don’t want to use your own search

engine you can use the default search engine, known as WiredTiger Storage Engine which is an

excellent storage engine, it efficiently works with your data like reading, writing, etc.

Working of MongoDB –The following image shows how the MongoDB works:

253

254

{

title: 'Geeksforgeeks',

by: 'Harshit Gupta',

url: 'https://www.geeksforgeeks.org',

type: 'NoSQL'

}

MongoDB work in two layers –

• Application Layer and

• Data layer

Application Layer is also known as the Final Abstraction Layer, it has two-parts, first is a

Frontend (User Interface) and the second is Backend (server). The frontend is the place

where the user uses MongoDB with the help of a Web or Mobile. This web and mobile include web pages,

mobile applications, android default applications, IOS applications, etc. The backend contains a server

which is used to perform server-side logic and also contain drivers or mongo shell to interact with

MongoDB server with the help of queries.

These queries are sent to the MongoDB server present in the Data Layer. Now, the MongoDB server

receives the queries and passes the received queries to the storage engine. MongoDB server itself does not

directly read or write the data to the files or disk or memory. After passing the received queries to the

storage engine, the storage engine is responsible to read or write the data in the files or memory basically it

manages the data.

MongoDB, the most popular NoSQL database, is an open-source document-oriented database. The term

‘NoSQL’ means ‘non-relational’. It means that MongoDB isn’t based on the table- like relational database

structure but provides an altogether different mechanism for storage and retrieval of data. This format of

storage is called BSON (similar to JSON format).

A simple MongoDB document Structure:

SQL databases store data in tabular format. This data is stored in a predefined data model which is not very

much flexible for today’s real-world highly growing applications. Modern applications are more

networked, social and interactive than ever. Applications are storing more and more data and are

accessing it at higher rates.

Relational Database Management System(RDBMS) is not the correct choice when it comes to handling

big data by the virtue of their design since they are not horizontally scalable. If the database runs on a

single server, then it will reach a scaling limit. NoSQL databases are more scalable and provide superior

performance. MongoDB is such a NoSQL database that scales by adding more and more servers and

increases productivity with its flexible document model.

Getting Started

http://www.geeksforgeeks.org/

255

mongo: The Command Line Interface to interact with the db.
mongod: This is the database. Sets up the server.
mongodump: It dumps out the Binary of the Database(BSON)
mongoexport: Exports the document to Json, CSV format
mongoimport: To import some data into the DB.
mongorestore: to restore anything that you’ve exported.
mongostat: Statistics of databases

After you install MongoDB, you can see all the installed file inside C:\ProgramFiles\MongoDB\ (default

location). In the C:\Program Files\MongoDB\Server\3.2\bin directory, there are a bunch of executables

and a short- description about them would be:

 Database, Collection and Documents:-

Database

• Database is a container for collections.

• Each database gets its own set of files.

• A single MongoDB server can has multiple databases.

Collection

• Collection is a group of documents.

• Collection is equivalent to RDBMS table.

• A collection consist inside a single database.

• Collections do not enforce a schema.

• A Collection can have different fields within a Documents.

•

Document:-

A document database has information retrieved or stored in the form of a document or other words semi-

structured database. Since they are non-relational, so they are often referred to as NoSQL data.

The document database fetches and accumulates data in forms of key-value pairs but here, the values are

called as Documents. A document can be stated as a complex data structure.

Document here can be a form of text, arrays, strings, JSON, XML, or any such format. The use of nested

documents is also very common. It is very effective as most of the data created is usually in the form of

JSON and is unstructured.

https://www.geeksforgeeks.org/mongodb-an-introduction/

256

Consider the below example that shows a sample database stored in both Relational and Document

Database

257

How it works ?

Now, we will see how actually thing happens behind the scene. As we know that MongoDB is a database server

and the data is stored in these databases. Or in other words, MongoDB environment gives you a server that you

can start and then create multiple databases on it using MongoDB.

Because of its NoSQL database, the data is stored in the collections and documents. Hence the database, collection,

and documents are related to each other as shown below:

258

• The MongoDB database contains collections just like the MYSQL database contains tables. You are

allowed to create multiple databases and multiple collections.

• Now inside of the collection we have documents. These documents contain the data we want to store

in the MongoDB database and a single collection can contain multiple documents and you are schema-less

means it is not necessary that one document is similar to another.

• The documents are created using the fields. Fields are key-value pairs in the documents, it is just like

columns in the relation database. The value of the fields can be of any BSON data types like double, string,

boolean, etc.

• The data stored in the MongoDB is in the format of BSON documents. Here, BSON stands for

Binary representation of JSON documents. Or in other words, in the backend, the MongoDB server

converts the JSON data into a binary form that is known as BSON and this BSON is stored and queried

more efficiently.

• In MongoDB documents, you are allowed to store nested data. This nesting of data allows you to

create complex relations between data and store them in the same document which makes the working and

fetching of data extremely efficient as compared to SQL. In SQL, you need to write complex joins to get

the data from table 1 and table 2. The maximum size of the BSON document is 16MB.

NOTE: In MongoDB server, you are allowed to run multiple databases.

For example, we have a database named GeeksforGeeks. Inside this database, we have two collections and in

these collections we have two documents. And in these documents we store our data in the form of fields. As

shown in the below image:

259

260

How mongoDB is different from RDBMS ?

Some major differences in between MongoDB and the RDBMS are as follows:

MongoDB RDBMS

It is a non-relational and document- oriented

database.

It is a relational database.

It is suitable for hierarchical data storage.

It is not suitable for hierarchical data storage.

It has a dynamic schema. It has a predefined schema.

It centers around the CAP theorem

(Consistency, Availability, and Partition

tolerance).

It centers around ACID properties

(Atomicity, Consistency, Isolation, and

Durability).

In terms of performance, it is much faster than

RDBMS.

In terms of performance, it is slower than MongoDB.

261

Install MongoDB

• There are 3 ways to install and use MongoDB

1. Community Server(free and open source. after download use local system)

2. Visual Studio Extension

3. MongoDB Atlas(cloud hosted DB offered by MONGO DB company)

1. Let’s install MongoDB on our machines(Windows)

• Visit official website: http://mongodb.com

• Download the latest stable version from Community Server

• The Community server will also install the following apps

a. Community Server

b. Compass-GUI Tool for MongoDB

Install MongoDB on Windows using MSI

Requirements to Install MongoDB on Windows

• MongoDB 4.4 and later only support 64-bit versions of Windows.

• MongoDB 7.0 Community Edition supports the following 64-bit versions of Windows on

x86_64 architecture:

• Windows Server 2022

• Windows Server 2019

• Windows 11

To install MongoDB on windows, first, download the MongoDB server and then install the MongoDB

shell. The Steps below explain the installation process in detail and provide the required resources for the

smooth download and install MongoDB.

Step 1: Go to the MongoDB Download Center to download the MongoDB Community Server.

http://mongodb.com/
https://www.mongodb.com/download-center/community

262

Here, You can select any version, Windows, and package according to your requirement. For Windows, we need to

choose:

• Version: 7.0.4

• OS: Windows x64

• Package: msi

Step 2: When the download is complete open the msi file and click the next button in the startup screen:

Step 3: Now accept the End-User License Agreement and click the next button:

263

Step 4: Now select the complete option to install all the program features. Here, if you can want to install only

selected program features and want to select the location of the installation, then use the Custom option:

Step 5: Select “Run service as Network Service user” and copy the path of the data directory. Click Next:

Step 6: Click the Install button to start the MongoDB installation process:

264

Step 7: After clicking on the install button installation of MongoDB begins:

Step 8: Now click the Finish button to complete the MongoDB installation process:

Step 9: Now we go to the location where MongoDB installed in step 5 in your system and copy the bin path:

265

Step 10: Now, to create an environment variable open system properties << Environment Variable << System

variable << path << Edit Environment variable and paste the copied link to your environment system and click

Ok:

Step 11: After setting the environment variable, we will run the MongoDB server, i.e. mongod. So, open the

command prompt and run the following command:

 mongod

When you run this command you will get an error i.e. C:/data/db/ not found.

Step 12: Now, Open C drive and create a folder named “data” inside this folder create another folder named

“db”. After creating these folders. Again open the command prompt and run the following command:

 mongod

Now, this time the MongoDB server(i.e., mongod) will run successfully.

266

Run mongo Shell

Step 13: Now we are going to connect our server (mongod) with the mongo shell. So, keep that mongod

window and open a new command prompt window and write mongo. Now, our mongo shell will successfully

connect to the mongod.

Important Point: Please do not close the mongod window if you close this window your server will stop

working and it will not able to connect with the mongo shell.

267

Now, you are ready to write queries in the mongo Shell.

Run MongoDB

Now you can make a new database, collections, and documents in your shell. Below is an example of how to

make a new database:

The use Database_name command makes a new database in the system if it does not exist, if the database

exists it uses that database:

use gfg

Now your database is ready of name gfg.

The db.Collection_name command makes a new collection in the gfg database and the insertOne() method

inserts the document in the student collection: db.student.insertOne({Akshay:500})

2. MongoDB – Visual Studio Extension

• Search and install MongoDB Visual Studio Code – Extension

Fig.1. MongoDB – Visual Studio Extension

MongoDB – Atlas

• Cloud-Hosted and Fully Managed MongoDB

• Pay as you go model

268

• Very cost-effective

• Fully secured and reliable

269

 Data Modeling

Definition:-

Data modelling refers to the organization of data within a database and the links between related

entities. Data in MongoDB has a flexible schema model, which means:

• Documents within a single collection are not required to have the same set of fields.

• A field's data type can differ between documents within a collection.

The primary problem in data modeling is balancing application needs, database engine performance

features, and data retrieval patterns. Always consider the application uses of the data (i.e. queries,

updates, and data processing) as well as the fundamental design of the data itself when creating data

models.

Advantages Of Data Modelling

Data modelling is essential for a successful application, even though at first it might just seem like one

more step. In addition to increasing overall efficiency and improving development cycles, data

modelling helps you better understand the data at hand and identify future business requirements,

which can save time and money. In particular, applying suitable data models:

• Improves application performance through better database strategy, design,

and implementation.

• Allows faster application development by making object mapping easier.

• Helps with better data learning, standards, and validation.

• Allows organizations to assess long-term solutions and model data while solving not

just current projects but also future application requirements, including maintenance.

Different Types of Data Models

The three types of data models that are typically classified as follows:

1. Conceptual data model

Conceptual Data Models are rough sketches that provide the big picture, detailing where

data/information from various business processes will be stored in the database system and the

relationships they will be involved with. A conceptual data model typically includes the entity class,

attributes, constraints, and the relationship between security and data integrity requirements.

This model describes the types of data that should be in the system and how they relate to one another.

This model, which is typically developed with the support of the business stakeholders, it contains the

business logic of the application, often involves domain-driven design (DDD) principles, and serves

as the foundation for one or more of the following models. The primary purpose of the conceptual

model is to identify the information that will be essential to an organization.

2. Logical data model

Logical data models provide more detailed, subjective information about data set relationships. At

this stage, we can clearly connect what data types and relations are used. Logical data models are

generally missed in rapid business contexts, having their utility in data-driven initiatives requiring

important procedure execution.

The logical data model specifies how data will be organized. The relationship between entities is

https://www.mongodb.com/docs/manual/reference/glossary/#std-term-document
https://www.mongodb.com/docs/manual/reference/glossary/#std-term-collection

270

established at a high level .In this model, and a list of entity properties is also provided. This data

model can be viewed as a “blueprint” for the data that will be used.

3. Physical data model

The schema/layout for data storage routines within a database is defined by the physical data

model. A physical data model is a ready-to-implement plan that can be stored in a relational

database.

The physical data model is a representation of how data will be stored in a particular

database management system (DBMS). In this approach, main and secondary keys in a relational

database are defined, or the decision to include or connect data in a document database such as

MongoDB based on entity relationships is made. This is also where you will define the data types for

each of your fields, which will create the database structure.

Data Model Design (or) Types

For modelling data in MongoDB, two strategies are available. These strategies are different and it is

recommended to analyze our scenario for a better flow. The two methods are as follows:

1. Embedded Data Model

2. Normalized Data Model

1. Embedded Data Model

This method, also known as the de-normalized data model, allows you to have (embed) all of the

related data in a single document.

For example, if we obtain student information in three different documents, Personal_details,

Contact, and Address, we can embed all three in a single one, as shown below.

{
_id: ,
Std_ID: "987STD001"
Personal_details:{

First_Name:
"Rashmika",
Last_Name: "Sharma",
Date_Of_Birth: "1999-08-26"

},
Contact: {

e-mail:
"rashmika_sharma.123@gmail.com",
phone: "9987645673"

},
Address: {

city: "Karnataka",
Area: "BTM2ndStage",
State: "Bengaluru"

}
}

mailto:rashmika_sharma.123@gmail.com

271

{
_id: <StudentId101>,
Std_ID: "10025AE336"

}

2. Normalized Data Model (or) Reference Data Model:

In a normalized data model, object references are used to express the relationships between

documents and data objects. Because this approach reduces data duplication, it is relatively simple

to document many-to-many relationships without having to repeat content. Normalized data models

are the most effective technique to model large hierarchical data with cross- collection relationships.
Student:

Personal_Details:

Contact:

Address:

Considerations while designing Schema in MongoDB

• Design your schema according to user requirements.

• Combine objects into one document if you will use them together. Otherwise separate them (but

make sure there should not be need of joins).

• Duplicate the data (but limited) because disk space is cheap as compare to compute time.

• Do joins while write, not on read.

• Optimize your schema for most frequent use cases.

• Do complex aggregation in the schema.

{
_id: <StudentId104>,
stdDocID: "
StudentId101", city:
"Karnataka",
Area:
"BTM2ndStage",
State: "Bengaluru"

}

{
_id: <StudentId103>,
stdDocID: "
StudentId101",
e-mail:
"rashmika_sharma.123@gmail.com",
phone: "9987645673"

}

{
_id: <StudentId102>,
stdDocID: " StudentId101",
First_Name: "Rashmika",
Last_Name: "Sharma",
Date_Of_Birth: "1999-08-
26"

}

mailto:rashmika_sharma.123@gmail.com

272

Example

Suppose a client needs a database design for his blog/website and see the differences between RDBMS and
MongoDB schema design. Website has the following requirements.

• Every post has the unique title, description and url.

• Every post can have one or more tags.

• Every post has the name of its publisher and total number of likes.

• Every post has comments given by users along with their name, message, data-time and likes.

• On each post, there can be zero or more comments.

In RDBMS schema, design for above requirements will have minimum three tables.

While in MongoDB schema, design will have one collection post and the following structure −

273

{
_id: POST_ID
title: TITLE_OF_POST,
description: POST_DESCRIPTION,
by: POST_BY,

url: URL_OF_POST,

tags: [TAG1, TAG2, TAG3],
likes: TOTAL_LIKES,
comments: [

{
user:'COMMENT_BY',
message: TEXT,
dateCreated: DATE_TIME,
like: LIKES

},
{

user:'COMMENT_BY',
message: TEXT,
dateCreated: DATE_TIME,
like: LIKES

}
]

So while showing the data, in RDBMS you need to join three tables and in MongoDB, data will be

shown from one collection only.

Connect MongoDB:-

Mongodb compass

• Connect with compass app

• Understand basics of compass app

• Get your hands-on examples with compass

Hostname:-Localhost

Port:-27017

Visual Studio:-

• Connect with Visual Studio Code Extension

• Understand basics of visual Studio Code Extension

• Get your hands-on examples with Visual Studio Code Extension

Connect:- mongodb://localhost:27017

}

274

Shell:mongos

h (Or)

Mongod creating server and mongo for shell.

CURD Operation:-

Creating and drop database:-

• use anu;//creating

• show dbs;//display all db

• db//current db

• db.dropDatabase();//deleting

db Creating and drop collections:-

Syntax:-

• db.createCollection(name,options)//creating

• db.collection.drop()

• db.collection.insertOne({key:”value”})

Ex:-

• db.createCollection(“products”);

• db.products.drop()

Inserting Documents into

Collections:- Syntax:-

• db.collection_name.insert({“name”:”aaa”})//one

• db.collection_name.insertMany([{“name”:”aaa”}, {“name”:”bbb”}])//many

• Example:- db.aaa.insert({“name”:”aaa”})//one

• db.bbb.insertMany([{"name":"aaa"}, {"name":"bbb"}])//many

Update:-

• db.bbb.update({"name":"bbb"},{$set:{"name":"ccc","isActive":true}});

Read:-

• db.bbb.find();

• db.bbb.findOne();

• db.bbb.find({"name":"ccc"});

• db.bbb.findOneAndReplace({"name":"ccc"},{"name":"eee"});

• db.bbb.findOneAndDelete({"name":"eee"});

275

•

Delete:-

db.orders.deleteOne({"name":"aaa"})

/*

Db.student.insertOne({name:”anusha”})

Db.student.find().pretty()

*/

 Query and Projection

MongoDB Query

MongoDB Query Operators

Similar to SQL MongoDB have also some operators to operate on data in the collection. MongoDB

query operators check the conditions for the given data and logically compare the data with the help of

two or more fields in the document.

Query operators help to filter data based on specific conditions. E.g., $eq,$and,$exists, etc.

MongoDB provides the function names as db.collection_name.find() to operate query operation on
database.

Syntax:

db.collection_name.find()

Example:

db.article.find()

Types of Query Operators in MongoDB

The Query operators in MongoDB can be further classified into 8 more types. The 8 types of Query

Operators in MongoDB are:

1. Comparison Operators

2. Logical Operators

3. Array Operators

4. Evaluation Operators

5. Element Operators

6. Bitwise Operators

7. Geospatial Operators

8. Comment Operators

1. Comparison Operators

The comparison operators in MongoDB are used to perform value-based comparisons in queries. The

https://www.geeksforgeeks.org/sql-tutorial/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#1-comparison-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#2-logical-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#3-array-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#4-evaluation-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#5-element-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#6-bitwise-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#7-geospatial-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#8-comment-operators

276

comparison operators in the MongoDB are shown as below:

277

Comparison

Operator

Description

Syntax

$eq
Matches values that are equal to a specified value.

{ field: { $eq: value } }

$ne

Matches all values that are not equal to a specified value.

{ field: { $ne: value } }

$lt
Matches values that are less than a specified value.

{ field: { $lt: value } }

$gt
Matches values that are greater than a specified value.

{ field: { $gt: value } }

$lte

Matches values that are less than or equal to a specified

value.

{ field: { $lte: value } }

$gte

Matches values that are greater than or equal to a specified

value.

{ field: { $gte: value } }

$in

Matches any of the values specified in an array. { field: { $in: [<value1>,

<value2>,

...] } }

Documents:

db.books.insertMany([{"p_name":"book","price":50},{"p_name":"pen","price":100},{"p_name

":"pencilbox","price":500},{"p_name":"ball","price":200}]);

MongoDB Comparison Operators

1. $eq

The $eq specifies the equality condition. It matches documents where the value of a field equals the specified
value.

Syntax:

 { <field> : { $eq: <value> } }

Example:

db.books.find ({ price: { $eq: 200 } })

278

The above example queries the books collection to select all documents where the value of the price filed equals

300.

2. $gt

The $gt chooses a document where the value of the field is greater than the specified value.

Syntax:

 { field: { $gt: value } }

Example:

 db.books.find ({ price: { $gt: 200 } })

3. $gte

The $gte choose the documents where the field value is greater than or equal to a specified value.

Syntax:

279

 { field: { $gte: value } }

Example:

 db.books.find ({ price: { $gte: 250 } })

4. $in

The $in operator choose the documents where the value of a field equals any value in the specified array.

Syntax:

. { filed: { $in: [<value1>, <value2>, ……] } }

Example:

. db.books.find({ price: { $in: [100, 200] } })

280

5. $lt

The $lt operator chooses the documents where the value of the field is less than the specified value.

Syntax:

 { field: { $lt: value } }

Example:

 db.books.find ({ price: { $lt: 20 } })

281

282

6. $lte

The $lte operator chooses the documents where the field value is less than or equal to a specified value.

Syntax:

1. { field: { $lte: value } }

Example:

1. db.books.find ({ price: { $lte: 250 } })

7. $ne

The $ne operator chooses the documents where the field value is not equal to the specified value.

Syntax:

 { <field>: { $ne: <value> } }

Example:

 db.books.find ({ price: { $ne: 500 } })

283

8. $nin

The $nin operator chooses the documents where the field value is not in the specified array or does not exist.

Syntax:

 { field : { $nin: [<value1>, <value2>, ...] } }

Example:

 db.books.find ({ price: { $nin: [50, 150, 200] } })

284

285

MongoDB Logical Operator

Logical Operators

The logical operators in MongoDB are used to filter data based on expressions that evaluate to true or false.

The Logical operators in MongoDB are shown in the table below:

Logical

Operator

Description

Syntax

$and

Returns all the documents that

satisfy all the conditions.

{ $and: [{ <expression1> }, {

<expression2> } , ... , {

<expressionN> }

] }

$not

Inverts the effect of the query expression and returns

documents that do not match the query expression.

{ field: { $not: { <operator-

expression>

} } }

$or

Returns the documents from the query that match

either one of the conditions in the query.

{ $or: [{ <expression1> }, {

<expression2> }, ... , {

<expressionN> }

] }

$nor

Returns the documents that fail to

match both conditions.

{ $nor: [{ <expression1> }, {

<expression2> }, ... , {

<expressionN> }

] }

$and

The $and operator works as a logical AND operation on an array. The array should be of one or more expressions

and chooses the documents that satisfy all the expressions in the array.

Syntax:

 { $and: [{ <exp1> }, { <exp2> }, ..]}

Example:

 db.books.find ({ $and: [{ price: { $ne: 500 } }, { price: { $exists: true } }] })

286

$not

The $not operator works as a logical NOT on the specified expression and chooses the documents that are not

related to the expression.

Syntax:

 { field: { $not: { <operator-expression> } } }

Example:

 db.books.find ({ price: { $not: { $gt: 200 } } })

287

$nor

The $nor operator works as logical NOR on an array of one or more query expression and chooses the documents

that fail all the query expression in the array.

Syntax:

{ $nor: [{ <expression1> } , { <expresion2> } ,] }

Example:

db.books.find ({ $nor: [{ price: 200 }, { p_name:"pen" }] })

288

289

$or

It works as a logical OR operation on an array of two or more expressions and chooses documents that meet the

expectation at least one of the expressions.

Syntax:

{ $or: [{ <exp_1> }, { <exp_2> }, ... , { <exp_n> }] }

Example:

db.books.find ({ $or: [{ p_name: "book" }, { price: 500 }] })

Array Operator

Name Description

$all Matches arrays that contain all elements specified in the query.

$elemMat
ch

Selects documents if element in the array field matches all the specified $elemMatch
conditio

$size Selects documents if the array field is a specified size.

$all

It chooses the document where the value of a field is an array that contains all the specified elements.

https://www.mongodb.com/docs/manual/reference/operator/query/all/#mongodb-query-op.-all
https://www.mongodb.com/docs/manual/reference/operator/query/elemMatch/#mongodb-query-op.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/query/elemMatch/#mongodb-query-op.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/query/elemMatch/#mongodb-query-op.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/query/size/#mongodb-query-op.-size

290

Syntax:

 { <field>: { $all: [<value1> , <value2> ...] } }

Example:

 db.books.find({ tags: { $all: ["Java", "MongoDB", "RDBMS"] } })

$elemMatch

The operator relates documents that contain an array field with at least one element that matches with all the

given query criteria.

Syntax:

 { <field>: { $elemMatch: { <query1>, <query2>, ... } } }

Example of Using $elemMatch Operator

Let’s first make some updates in our demo collection. Here we will Insert some data into the count_no

database

Query:

 db.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green","Blue"] });

Output:

291

Inserting the array of elements .

Now, using the $elemMatch operator in MongoDB let’s match the Red colors from a set of Colors.

Query:

 db.count_no.find({"Colors": {$elemMatch: {$eq: "Red" } } },{_id: 0 });

Output:

Using the elemMatch Operator.

Explanation: The $elemMatch operator is used with the field Colors which is of type array. In the above

query, it returns the documents that have the field Colors and if any of the values in the Colors field has

“Red” in it.

Example:

db.books.find({ price: { $elemMatch: { $gte: 500, $lt: 400 } } })

$size

It selects any array with the number of the element specified by the argument.

Syntax:

db.collection.find({ field: { $size: 2 } });

292

1. db.count_no.find({"Colors": {$size: 3 } },{_id: 0 });

MongoDB Evaluation Operator

The evaluation operators in the MongoDB are used to return the documents based on the result of the given

expression.

Some of the evaluation operators present in the MongoDB are:

293

Evaluation

Operator

Description

Syntax

$mod

operator

The $mod operator in MongoDB performs a modulo operation on the

value of a field and selects documents where the modulo equals a

specified value. It only works with numerical fields.

{ field: { $mod:

[divisor,

remainder]

} }

$expr

operator

The $expr operator in MongoDB allows aggregation expressions to be

used as query conditions. It returns documents that satisfy the

conditions of the query.

{ $expr: {

<aggregation

expression>

} }

$where

operator

The $where operator in MongoDB uses JavaScript expression or

function to perform queries. It evaluates the function for every

document in the database and returns the documents that match the

condition.

{ $where:

<JavaScript

expression

Evaluation

Name Description

$expr Allows use of aggregation expressions within the query language.

$jsonSche
ma

Validate documents against the given JSON Schema.

$mod Performs a modulo operation on the value of a field and selects

documents with a specified result.

$regex Selects documents where values match a specified regular expression.

$text Performs text search.

$where Matches documents that satisfy a JavaScript expression.

$expr

The expr operator allows the use of aggregation expressions within the query language.

Syntax:

 { $expr: { <expression> } }

https://www.mongodb.com/docs/manual/reference/operator/query/expr/#mongodb-query-op.-expr
https://www.mongodb.com/docs/manual/reference/operator/query/jsonSchema/#mongodb-query-op.-jsonSchema
https://www.mongodb.com/docs/manual/reference/operator/query/jsonSchema/#mongodb-query-op.-jsonSchema
https://www.mongodb.com/docs/manual/reference/operator/query/mod/#mongodb-query-op.-mod
https://www.mongodb.com/docs/manual/reference/operator/query/regex/#mongodb-query-op.-regex
https://www.mongodb.com/docs/manual/reference/operator/query/text/#mongodb-query-op.-text
https://www.mongodb.com/docs/manual/reference/operator/query/where/#mongodb-query-op.-where

294

Example:

 db.store.find({ $expr: {$gt: ["$product" , "$price"] } })

$jsonSchema

It matches the documents that satisfy the specified JSON Schema. db.createCollection("students12",{

validator:{

$jsonSchema: {

required: ["name", "major", "gpa", "address"],

properties: {

name: {

bsonType: "string",

description: "must be a string and is required"

},

address: {

bsonType: "object",

required: ["zipcode"],

295

properties: {

"street": { bsonType: "string" },

"zipcode": { bsonType: "string"

}

}

}

}

}

}

})

//////

Studen

t:{

name:'anusha',

major:'aaa',

gpa:'20',

address:{

zipcode:'25

5'

}

}Syntax:

 { $jsonSchema: <JSON schema object> }

296

$mod

The mod operator selects the document where the value of a field is divided by a divisor has the specified

remainder.

Syntax:

 { field: { $mod: [divisor, remainder] } }

Example:

297

1. db.books.find ({ quantity: { $mod: [3, 0] } })

$regex

It provides regular expression abilities for pattern matching strings in queries. The MongoDB uses regular

expressions that are compatible with Perl.

Syntax:

1. { <field>: /pattern/<options> }

Example:

db.books.find({ p_name: { $regex: /b/ } })

298

$text

The $text operator searches a text on the content of the field, indexed with a text index.

db.books.createIndex({bio:"text"})

Syntax:

 1. {

2. $text:

 3. {

4. $search: <string>,

5. $language: <string>,

6. $caseSensitive: <boolean>,

7. $diacriticSensitive: <boolean>

8. }

9. }

Example:

 db.books.find({ $text: { $search: "hello" } })

299

$where

The "where" operator is used for passing either a string containing a JavaScript expression or a full JavaScript

function to the query system.

Example:

db.books.find({$where:function(){return (obj.p_name=="book")}})

 Element Operators

The element operators in the MongoDB return the documents in the collection which returns true if the keys

match the fields and datatypes.

There are mainly two Element operators in MongoDB:

300

Element

Operator

Description

Syntax

$exists

Checks if a specified field exists in the documents. { field: { $exists: <boolean>

}

}

$type
Verifies the data type of a specified

field in the documents.

{ field: { $type: <BSON

type>

} }

MongoDB Element Operator

$exists

The exists operator matches the documents that contain the field when Boolean is true. It also matches the

document where the field value is null.

Syntax:

 { field: { $exists: <boolean> } }

Example:

db.books.find ({ price: { $exists: true, $nin: [50, 500] } })

$type

The type operator chooses documents where the value of the field is an instance of the specified BSON type.

301

Syntax:

 { field: { $type: <BSON type> } }

Example:

 db.books.find ({ "bookid" : { $type : 2 } });

Bitwise Operators

The Bitwise operators in the MongoDB return the documents in the MongoDB mainly on the fields that have

302

numeric values based on their bits similar to other programming languages.

Bitwise

Operator

Description

Syntax

$bitsAllClear
Returns documents where all bits

in the specified field are 0.

{ field: { $bitsAllClear:

<bitmask> } }

$bitsAllSet
Returns documents where all bits

in the specified field are 1.

{ field: { $bitsAllSet:

<bitmask> } }

$bitsAnySet
Returns documents where at least one

bit in the specified field is set (1).

{ field: { $bitsAnySet:

<bitmask> } }

$bitsAnyClear
Returns documents where at least one bit

in the specified field is clear (0).

{ field: { $bitsAnyClear:

<bitmask> } }

In the below example, we also specified the positions we wanted.

Example of Using $bitsAllSet Operator

Let’s find the Person whose Age has bit 1 from position 0 to 4.

Query:

 db.count_no.find({"Age":{$bitsAllSet: [0,4] } },{_id:0 });

Output:

$bitsAllSet in MongoDB

Explanation: In the above query, we have used $bitsAllSet and it returns documents whose bits position

from 0 to 4 are only ones. It works only with the numeric values. The numeric values will be converted into

the bits and the bits numbering takes place from the right.

Geospatial Operators

The Geospatial operators in the MongoDB are used mainly with the terms that relate to the data which

mainly focuses on the directions such as latitude or longitudes.

The Geospatial operators in the MongoDB are:

303

Geospatial

Operator

Description

Syntax

$near
Finds geospatial objects near a point.

Requires a geospatial index.

{ $near: { geometry: <point_geometry>,

maxDistance: <distance> (optional) } }

$center
(For $geoWithin with planar geometry)

Specifies a circle around a center point

{ $geoWithin: { $center: [<longitude>,

<latitude>], radius: <distance> } }

$maxDistance

Limits results of $near and $nearSphere

queries to a maximum distance from the

point.

{ $near: { geometry: <point_geometry>,

maxDistance: <distance> } }

$minDistance

Limits results of $near and $nearSphere

queries to a minimum distance from the

point.

{ $near: { geometry: <point_geometry>,

minDistance: <distance> } }

304

Comment Operators

The $comment operator in MongoDB is used to write the comments along with the query in the MongoDB which

is used to easily understand the data.

Comment Operator Example

Let’s apply some comments in the queries using the $comment Operator. Query:
 db.collection_name.find({ $comment : comment })

Output:

$Comment operator in MongoDB

Explanation: In the above query we used the $comment operator to mention the comment. We have used

“This is a comment” with $comment to specify the comment. The comment operator in the MongoDB is

used to represent the comment and it increases the understandibility of the code.

305

Database: GeeksforGeeks
Collection: employee
Document: five documents that contain the details of the employees in the form of field-value pairs.

MongoDB Projection

MongoDB provides a special feature that is known as Projection. It allows you to select only the necessary

data rather than selecting whole data from the document. For example, a document contains 5 fields, i.e.,

But we only want to display the name and the age of the employee rather than displaying whole details. Now,

here we use projection to display the name and age of the employee.

One can use projection with db.collection.find() method. In this method, the second parameter is the

projection parameter, which is used to specify which fields are returned in the matching documents.

Syntax:

• If the value of the field is set to 1 or true, then it means the field will include in the return

document.

• If the value of the field is set to 0 or false, then it means the field will not include in the return

document.

• You are allowed to use projection operators.

• There is no need to set _id field to 1 to return _id field, the find() method always return _id unless

you set a _id field to 0.

Examples:

In the following examples, we are working with:

db.collection.find({}, {field1: value2, field2: value2, ..})

{

name:

"Roma", age:

30, branch:

EEE,

department: "HR",

salary: 20000

}

306

307

Displaying the names of the employees –

Displaying the names of the employees without the _id field –

Displaying the name and the department of the employees without the _id field –

308

Displaying the names and the department of the employees whose joining year is 2018 –

Projection Operators

Name Description

$ Projects the first element in an array that matches the query condition.

$elemMatch Projects the first element in an array that matches the specified $elemMatch condition.

$meta

Projects the document's score assigned during the $text operation.

NOTE

$text provides text query capabilities for self-managed (non-Atlas) deployments. For data hosted on

MongoDB Atlas, MongoDB offers an improved full-text query solution, Atlas Search.

$slice Limits the number of elements projected from an array. Supports skip and limit slices.

MongoDB Projection Operator

$

The $ operator limits the contents of an array from the query results to contain only the first element matching the

query document.

https://www.mongodb.com/docs/manual/reference/operator/projection/positional/#mongodb-projection-proj.-
https://www.mongodb.com/docs/manual/reference/operator/projection/elemMatch/#mongodb-projection-proj.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/projection/elemMatch/#mongodb-projection-proj.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/aggregation/meta/#mongodb-expression-exp.-meta
https://www.mongodb.com/docs/atlas/atlas-search/
https://www.mongodb.com/docs/atlas/atlas-search/
https://www.mongodb.com/docs/manual/reference/operator/projection/slice/#mongodb-projection-proj.-slice

309

Syntax:

1. db.books.find({ <array>: <value> ... },

2. { "<array>.$": 1 })

3. db.books.find({ <array.field>: <value> ...},

4. { "<array>.$": 1 })

$elemMatch

The content of the array field made limited using this operator from the query result to contain only the first

element matching the element $elemMatch condition.

Syntax:

1. db.library.find({ bookcode: "63109" },

2. { students: { $elemMatch: { roll: 102 } } })

310

$meta

The meta operator returns the result for each matching document where the metadata associated with the

query.

Syntax:

1. { $meta: <metaDataKeyword> }

Example:

1. db.books.find(

2. <query>,

3. { score: { $meta: "textScore" } }

$slice

It controls the number of values in an array that a query returns.

Syntax:

1. db.books.find({ field: value }, { array: {$slice: count } });

Example:

1. db.books.find({}, { comments: { $slice: [200, 100] } })

311

pipeline = [

{ $match : { … } },

{ $group : { … } },

{ $sort : { … } }

]

Aggregation Pipeline

a. What is Aggregation in MongoDB?

Aggregation is a way of processing a large number of documents in a collection by means of passing them

through different stages. The stages make up what is known as a pipeline. The stages in a pipeline can filter,

sort, group, reshape and modify documents that pass through the pipeline.

One of the most common use cases of Aggregation is to calculate aggregate values for groups of documents.

This is similar to the basic aggregation available in SQL with the GROUP BY clause and COUNT, SUM

and AVG functions. MongoDB Aggregation goes further though and can also perform relational-like joins,

reshape documents, create new and update existing collections, and so on.

There are what are called single purpose methods like estimatedDocumentCount(), count(), and distinct()

which are appended to a find() query making them quick to use but limited in scope.

• Each stage of the pipeline transforms the documents as they pass through it and allowing for
operations like filtering, grouping, sorting, reshaping and performing calculations on the data.

b. MongoDB aggregate pipeline syntax

This is an example of how to build an aggregation query:

db.collectionName.aggregate(pipeline, options),

• where collectionName – is the name of a collection,

• pipeline – is an array that contains the aggregation stages,

• options – optional parameters for the

aggregation This is an example of the

aggregation pipeline syntax:

c. Single-purpose aggregation

• It is used when we need simple access to document like counting the number of documents or

for finding all distinct values in a document.

• It simply provides the access to the common aggregation process using

the count(), distinct() and estimatedDocumentCount() methods so due to which it lacks the

flexibility and capabilities of the pipeline.

Example of Single-purpose aggregation

Let’s consider a single-purpose aggregation example where we find the total number of users in each city

from the users collection.

https://www.geeksforgeeks.org/mongodb-count-method-db-collection-count/

312

Output:

In this example, the aggregation pipeline first groups the documents by the city field and then

uses the $sum accumulator to count the number of documents (users) in each city.
The result will be a list of documents, each containing the city (_id) and the total number of users
(totalUsers) in that city.

d. How to use MongoDB to Aggregate Data?

To use MongoDB for aggregating data, follow below steps:

1. Connect to MongoDB: Ensure you are connected to your MongoDB instance.

2. Choose the Collection: Select the collection you want to perform aggregation on, such as students.

3. Define the Aggregation Pipeline: Create an array of stages, like $group to group documents

and perform operations (e.g., calculate the average grade).

4. Run the Aggregation Pipeline: Use the aggregate method on the collection with your defined

pipeline.

Example:

This calculates the average grade of all students in the students collection.

e. Mongodb Aggregation Pipeline

• Mongodb Aggregation Pipeline consist of stages and each stage transforms the document. It

is a multi- stage pipeline and in each state and the documents are taken as input to produce the

resultant set of documents.

db.students.aggregate([
{
$group: {
_id: null,
averageGrade: { $avg: "$grade" }

}
}

])

[
{ _id: 'Los Angeles', totalUsers: 1 },
{ _id: 'New York', totalUsers: 1 },
{ _id: 'Chicago', totalUsers: 1 }

]

db.users.aggregate([
{ $group: { _id: "$city", totalUsers: { $sum: 1 } } }

])

313

• In the next stage (ID available) the resultant documents are taken as input to produce output,

this process continues till the last stage.

• The basic pipeline stages are defined below:

1. filters that will operate like queries.

2. the document transformation that modifies the resultant document.

3. provide pipeline provides tools for grouping and sorting documents.

• Aggregation pipeline can also be used in sharded collection.

Example:

Explanation:

In the above example of a collection of “train fares”. $match stage filters the documents by the value in

class field i.e. class: “first-class” in the first stage and passes the document to the second stage.

In the Second Stage, the $group stage groups the documents by the id field to calculate the sum of fare

for each unique id.

Here, the aggregate() function is used to perform aggregation. It can have three

operators stages , expression and accumulator. These operators work together to achieve final desired

outcome.

https://www.geeksforgeeks.org/mongodb-replication-and-sharding

314

f. Aggregation Pipeline Method

To understand Aggregation Pipeline Method Let’s imagine a collection named users with some documents

for our examples.

{
"_id": ObjectId("60a3c7e96e06f64fb5ac0700"), "name": "Alice", "age": 30,"email":
"alice@example.com",
"city": "New York"

}
{
"_id":
ObjectId("60a3c7e96e06f64fb5ac0701"),
"name": "Bob",
"age": 35,
"email": "bob@example.com",
"city": "Los Angeles"

}
"city": "New York"

}
{
"_id":
ObjectId("60a3c7e96e06f64fb5ac0701"),
"name": "Bob",
"age": 35,
"email": "bob@example.com",
"city": "Los Angeles"

}
{
"_id":
ObjectId("60a3c7e96e06f64fb5ac0702"),
"name": "Charlie",
"age": 25,
"email":
"charlie@example.com",
"city": "Chicago"

}

mailto:alice@example.com
mailto:bob@example.com
mailto:bob@example.com
mailto:charlie@example.com

315

db.users.aggregate([
{ $group: { _id: "$city", averageAge: { $avg: "$age" } } }

])

db.users.aggregate([
{ $project: { name: 1, city: 1, _id: 0 } }

])

db.users.aggregate([
{ $match: { age: { $gt: 30 } } }

])

$group: It Groups documents by the city field and calculates the average age using

the $avg accumulator.

Output:

$project: Include or exclude fields from the output documents.

Output:

$match: Filter documents to pass only those that match the specified condition(s).

Output:

[
{
_id:
ObjectId('60a3c7e96e06f64fb5ac0701'),
name: 'Bob',
age: 35,
email:
'bob@example.com', city:
'Los Angeles'

}
]

[
{ name: 'Alice', city: 'New York' },
{ name: 'Bob', city: 'Los Angeles' },
{ name: 'Charlie', city: 'Chicago' }

]

[
{ _id: 'New York', averageAge: 30 },
{ _id: 'Chicago', averageAge: 25 },
{ _id: 'Los Angeles', averageAge: 35 }

]

https://www.geeksforgeeks.org/mongodb-aggregation-group-command/#%3A~%3Atext%3DThe%20%24group%20command%20in%20MongoDB%27s%2Cfunctions%20on%20the%20grouped%20data
mailto:%27bob@example.com

316

db.users.aggregate([
{ $sort: { age: 1 } }

])

 $sort: It Order the documents.

Output:

[
{
_id:
ObjectId('60a3c7e96e06f64fb5ac0702'),
name: 'Charlie',
age: 25,
email: 'charlie@example.com',
city: 'Chicago'

},
{
_id:
ObjectId('60a3c7e96e06f64fb5ac0700'),
name: 'Alice',
age: 30,
email:
'alice@example.com', city:
'New York'

},
{
_id:
ObjectId('60a3c7e96e06f64fb5ac0701'),
name: 'Bob',
age: 35,
email: 'bob@example.com',
city: 'Los Angeles'

}
]

https://www.geeksforgeeks.org/mongodb-sort-method/
mailto:%27charlie@example.com
mailto:%27alice@example.com
mailto:%27bob@example.com

317

db.users.aggregate([
{ $limit: 2 }

])

$limit: Limit the number of documents passed to the next stage.

Output:

[
{
_id:
ObjectId('60a3c7e96e06f64fb5ac0700'),
name: 'Alice',
age: 30,
email: 'alice@example.com',
city: 'New York'

},
{
_id:
ObjectId('60a3c7e96e06f64fb5ac0701'),
name: 'Bob',
age: 35,
email: 'bob@example.com',
city: 'Los Angeles'

}
]

mailto:%27alice@example.com
mailto:%27bob@example.com

318

npm init
or
npm init -y

g. How Fast is MongoDB Aggregation?

• The speed of MongoDB aggregation depends on various factors such as the complexity of the

aggregation pipeline, the size of the data set, the hardware specifications of the MongoDB server and the

efficiency of the indexes.

• In general, MongoDB’s aggregation framework is designed to efficiently process large

volumes of data and complex aggregation operations. When used correctly it can provide fast and

scalable aggregation capabilities.

• So with any database operation, the performance can vary based on the specific use case and

configuration. It is important to optimize our aggregation queries and use indexes where appropriate

and ensure that our MongoDB server is properly configured for optimal performance.

How to Insert a Document into a MongoDB Collection using Node.js?

MongoDB, a popular NoSQL database, offers flexibility and scalability for handling data. If you’re

developing a Node.js application and need to interact with MongoDB, one of the fundamental operations

you’ll perform is inserting a document into a collection.

The steps to insert documents in MongoDB collection are given below

• NodeJS and MongoDB Connection

• Create a Collection in MongoDb using Node Js

• Insert a Single Document

• Insert Many Document

• Handling Insertion Results

• Read Documents from the collection

Steps to Setup the Project

Step 1: Create a nodeJS application by using this command

• npm init command asks some setup questions that are important for the project

• npm init -y command is used to set all the answers of the setup questions as yes.

Step 2: Install the necessary packages/libraries in your project using the following commands.

 npm install mongodb

Project Structure:

Project Structure

The updated dependencies in package.json file will look like:

https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#nodejs-and-mongodb-connection
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#create-a-collection-in-mongodb-using-node-js
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#insert-a-single-document
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#insert-many-document
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#handling-insertion-results
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#read-documents-from-the-collection

319

const { MongoClient } = require('mongodb');
// or as an ecmascript module:
// import { MongoClient } from 'mongodb'

// Connection URL
const url =
'mongodb://localhost:27017'; const
client = new MongoClient(url);

const dbName = 'project_name'; //

Database Name async function main() {

await client.connect();
console.log('Connected successfully to server');

const db = client.db(dbName);
const collection = db.collection('collection_name');

//Can Add the CRUD operations
}

main() .then(console.log)

.catch(console.error)
.finally(() => client.close());

NodeJS and MongoDB Connection

Once the MongoDB is installed we can use MongoDB database with the Nodejs Project.Initially we need

to specify the database name ,connection URL and the instance of MongoDBClient.

• MongoClient class provided method, to connect MongoDB and Nodejs.

• client is the instance of MongoDb and Node Js connection.

• client.connect() is used to connect to MongoDB database ,it awaits until the the connection is

established.

Create a Collection in MongoDb using Node Js
In this operation we create a collection inside a database.Intilally we specify the database in which collections is to

be created.

"dependencies": {
"mongodb": "^6.6.1"

}

320

• client is the instance of the connection which provides the db() method to create a new

Database.

• collection() method is used to set the instance of the collection .

Insert a Single Document

To insert a document into the collection insertOne() method is used.

Insert Many Documents

To insert a document into the collection insertMany() method is used.

Handling Insertion Results

In a project we have different tasks which needs to be executed in specific order.In the MongoDB and Node

Js project we must ensure that connection is set.While performing insertion of documents

, we perform asynchronous insertion so that execution is not interrupted.We use try-catch block to handle

errors while setting up connection, inserting document or while performing any other operation. If an error

occurs during execution ,catch block handles it or provide the details about the error ,which helps to resolve

the error.

const doc_array = [
{ document1 },
{ document2 },
{ document3 },

];

//Insert into collection
const insertDoc =

await collection.insertMany(doc_array);
console.log('Inserted documents =>',
insertDoc);

//Insert into collection
console.log('Inserted documents =>', insertDoc);

const insertDoc = await
collection.insertOne({ filed1: value1,
field2: value2,

);

//Sepcify Database
const dbName = 'database_name';

const db = client.db(dbName);

//Create Collection
const collection = db.collection('collection_name');

321

• Initally connection is established .AS the connection is established insertMany() method or

insertOne() method is used to insert the document in the collection.

• insertDoc stores the result of the insertion which is further logged.

Read Documents from the collection

We can read the documents inside the collection using the find() method.

find() method is used to along with empty {} are used to read all the documents in the collection.Which

are further converted into the array using the toArray() method.

Closing the Connection

Once the promise is resolved or rejected , code in finally block is executed. The close() method is used

to close the connection.

Connection is closed irrespective of the error .It is generally used to cleanup and release the

resource.

Example: Implementation to show Insertion of documents into a MongoDB collection using Node.js

JavaScript

const { MongoClient } = require("mongodb");

async function main() {

const url = "mongodb://127.0.0.1:27017";

const dbName = "GeeksforGeeks";

const studentsData = [

{ rollno: 101, Name: "Raj ", favSub: "Math" },

{ rollno: 102, Name: "Yash", favSub: "Science" },

{ rollno: 103, Name: "Jay", favSub: "History" },

];

let client = null;

finally{ client.close()
}

try {
const dbName =
'database_name'; await
client.connect();
const collection = db.collection('collection_name');

const doc_array = [

{ document1 },
{ document2 },
{ document3 },

];

//Insert into collection
const insertDoc = await collection.insertMany(doc_array);

console.log('Inserted documents =>', insertDoc);
} catch (error) {

console.error('Error:',
error);

}

const doc = await
collection.find({}).toArray();
console.log('Found documents =>', doc);

322

try {

// Connect to MongoDB

client = await MongoClient.connect(url);

console.log("Connected successfully to MongoDB");

const db = client.db(dbName);

const collection = db.collection("students");

// Add students to the database

await collection.insertMany(studentsData);

console.log("Three students added successfully");

// Query all students from the database

const students = await collection.find().toArray();

console.log("All students:", students);

} catch (err) { console.error("Error:", err);
} finally {

// Close the connection

if (client) {

client.close()

;

console.log("Connection closed successfully");

}

}

}

main();

Output:

323

Insert Document in MongoDB

Explanation :

In the above example, Initially MongoClient class is imported which is used to connect

MongoDB and Nodejs .client is the instance of MongoDb and Node Js connection. which is used

to name the database .As database is set ,collection() method sets the instance of the collection

.Three documents are inserted in the students collection using insertMany() method .Error

during the execution are handled using the try catch block ,finally connection is closed using the

close() method

 Using Mongoose for Structured Schema and Validation

Mongoose is a MongoDB object modeling and handling for a node.js environment. Mongoose

Validation is essentially a customizable middleware that gets defined inside the SchemaType of

Mongoose schema. It automatically fires off before a document is saved in the NoSQL DB. Validation

can also be run manually using doc.validate(callback) or doc.validateSync() methods.

Types of mongoose validation:

In Mongoose there are two types of validation:

1. Built-in validation

2. Custom validation

To get a better understanding of how built-in validators work, let’s look at the following:

1. Built-in validators:

A. Required validator: A schema uses required whenever it is mandatory to fill that field with any

value.

Required validator takes an array with 2 items, first a Boolean var and a message to return the validation

if it fails.

required: [true, “user name is required”]

we can also specify the Required validator without custom error message,

required: true

B. Unique validator: Unique is not a validator, but an option.

If the unique option is set, Mongoose will require each document to have a unique value for each path.

Unique option takes an array with 2 items, first a Boolean var and a custom error message.

unique: [true, 'email already exists']

we can also specify unique option without custom error message,

unique: true

2. Custom validators

In addition to the built-in validators, you can define custom validators. In custom validation, a validation

function is passed along with the declaration. Defining a custom validator involves creating a specialized

324

function within the schema’s field definition to ensure that the data inserted or updated meets specific

criteria beyond the standard validation rules offered by Mongoose.

Steps to create node application And Installing Mongoose:

Step 1: Create a node application using the following command:

mkdir folder_name

cd folder_name

npm init -y

touch main.js

Step 2: After creating the NodeJS application, Install the required module using the following command:

npm install mongoose

Project Structure: It will look like the following.

The updated dependencies in package.json file will look like:

"dependencies": {

 "express": "^4.18.2"

}

Example 1: In this example, we will use a “required” validator to check whether a value is passed to the

document or not before saving it to the DB.

// main.js

const mongoose = require('mongoose')

// Database connection

mongoose.connect('mongodb://localhost:27017/query-helpers', {

 dbName: 'event_db',

 useNewUrlParser: true,

 useUnifiedTopology: true

}, err => err ? console.log(err) :

 console.log('Connected to database'));

const personSchema = new mongoose.Schema({

 name: {

 type: String,

325

 required: true

 }

});

const Person = mongoose.model('Person', personSchema);

const person = new Person({});

(async () => {

 try {

 await person.save();

 } catch (err) {

 console.log(err)

 }

})();

Step to Run Application: Run the application using the following command from the root directory of

the project:

node main.js

Output:

	[R22A0513]
	LECTURE NOTES
	COURSE OBJECTIVES:
	UNIT - I
	UNIT - II
	UNIT - III
	React:

	UNIT – IV
	UNIT – V
	MongoDB:

	TEXT BOOKS:
	REFERENCE BOOKS:
	COURSEOUTCOMES:
	UNIT – I
	HTML Paragraph Tag Attributes:

	HTML Image Maps:
	The Image
	Create Image Map
	Shape="rect"
	HTML Unorder Lists

	Example of HTML List
	HTML Order Lists:

	Example of HTML List
	HTML Description Lists

	Tags used in HTML Tables:
	Defining Tables in HTML:
	Table Cells:
	Syntax:

	Table Rows:
	Syntax:

	Table Headers
	Syntax:

	The <div> Element:
	<div> as a container:
	Center align a <div> element:
	Multiple <div> elements
	Aligning <div> elements side by side
	Grid
	Example

	HTML Forms
	The <form> Element

	HTML Form Attributes:
	The Action Attribute:
	The Target Attribute:
	The Method Attribute:
	Example

	The Autocomplete Attribute
	The Novalidate Attribute
	1.HTML Input Types:

	HTML Input Attributes:
	2. <label> Element:
	3.<select> Element:
	4. <textarea> Element:
	5. <button> Element:
	6.<fieldset> and <legend> Elements:
	1. Inline CSS
	2. Internal or Embedded CSS
	3. External CSS

	CSS Selectors
	Types of CSS Selectors

	CSS Background
	CSS Background Property

	CSS Borders
	CSS Border Properties

	CSS Fonts
	Key Properties of CSS Fonts

	CSS Text Formatting
	CSS Text Formatting Properties

	CSS Tables
	CSS Table Properties
	1. Border
	2. Border Collapse
	3. Border Spacing
	4. Caption Side
	5. Empty cells

	CSS Box Model
	What is the CSS Box Model?
	Key Components of the Box Model
	1. Content Area
	2. Padding Area
	3. Border Area
	4. Margin Area

	What Is Git Version Control?
	What is Version Control?
	What is Git?
	Why Use Git?
	Working with Git
	What is Github?
	Various Approaches To Use Git For Version Control

	Approach 1: Git via Command Line
	Step 1: Install Git.
	Step 2: Initialize a Git Repository
	Step 3: Staging Changes
	Step 4: Committing Changes
	Step 5: Viewing Commit History
	Step 6: Creating and working with Branches
	Step 7: Pushing to a Remote Repository

	Approach 2: Git with GUI Clients
	Step 1: Install a Git GUI/Client.
	Step 2: Clone or Create a Repository
	Step 3: Stage and Commit Changes
	Step 4: Push to Remote

	Approach 3: Git in Integrated Development Environments (IDEs)
	Step 1: Configure Git in the IDE
	Step 2: Cloning or initializing repository
	Step 3: Use stage/commit/push

	Branching strategies In Git
	Key Terminologies
	What Is A Branching Strategy?
	Step By Step Implementation Of Creating A Branch
	Step 1: Create Branch
	Step 2: Navigate to Branch
	Step 3: Creating And Navigating Branch At A Time
	Step 4: Check Current Branch
	Step 5: Delete a Branch

	Common Git Branching Strategies
	Gitflow Workflow
	Pros Of Gitflow
	Cons Of Gitflow

	GitHub Flow
	Pros Of Github Flow
	Cons Of Github Flow
	GitLab Flow
	Pros Of Gitlab Flow
	Cons Of Github Flow
	Trunk Based Development
	Pros Of Trunk Based Development
	Cons Of Trunk Based Development

	Picking The Right Branching Strategy
	What is Git Merge?
	Uses of Git Merge

	How Does Git Merge Work?
	Merging Types
	1. Fast-Forward Merging
	2. Three-Way Merging

	Steps To Merge a Branch
	How To Resolve Merge Conflicts?

	JAVASCRIPT
	Introduction to JavaScript
	What is JavaScript?
	What can a JavaScript Do ?
	JavaScript Variables
	<html>
	<script type="text/javascript"> var firstname;
	firstname="Welcome";
	document.write(firstname);
	document.write("
");
	firstname="XYZ";
	document.write(firstname);
	<p>The script above declares a variable, assigns a value to it, displays the value, change the value, and displays the value again.</p>
	</body>
	Output :
	Declaring (Creating) JavaScript Variables
	Assigning Values to Undeclared JavaScript Variables
	Redeclaring JavaScript Variables

	DataTypes
	JavaScript Operators
	JavaScript Arithmetic Operators
	JavaScript Assignment Operators
	The + Operator Used on Strings
	Adding Strings and Numbers
	How Can it be Used
	Logical Operators
	Conditional Operator
	Syntax

	Conditional Statements
	Syntax
	Example 1
	Syntax
	Syntax
	The JavaScript Switch Statement

	JavaScript Controlling(Looping) Statements
	Loops in JavaScript are used to execute the same block of code a specified number of times or while a specified condition is true.
	JavaScript Loops

	Syntax
	Result
	Loops in JavaScript are used to execute the same block of code a specified number of times or while a specified condition is true.
	The while loop

	Example
	Result
	Example

	JavaScript Break and Continue
	There are two special statements that can be used inside loops: break and continue.
	JavaScript break and continue Statements

	Example
	Example

	JavaScript Functions
	Example
	How to Define a Function
	The return Statement

	Example
	The Lifetime of JavaScript Variables

	What is an Event?
	Event Handlers
	Method 1 (Link Events):
	Method 3 (BODY onLoad & onUnLoad):
	-- OR --
	-- OR --
	-- OR --
	Setting the bgColor Property
	Event Handlers

	JavaScript Arrays
	The Size of the Array
	Multidimensional Arrays
	Array Properties
	length

	JavaScript Array Object
	The Array object is used to store multiple values in a single variable.
	Create an Array
	Access an Array
	Modify Values in an Array

	JavaScript Date Object
	Create a Date Object
	Set Dates
	Compare Two Dates

	JavaScript Math Object
	Math Object
	Mathematical Constants
	Mathematical Methods

	JavaScript String Object
	String object
	Window Object Collections
	Document Object
	Document Object Collections

	History Object
	History Object Properties

	Form Object
	Form Object Collections
	Standard Properties

	Image Object
	Image Object Properties

	Area Object
	Area Object Properties

	Navigator Object

	ZIP CODE VALIDATION
	JavaScript Form Validation
	Steps for Form Validation in JavaScript
	Types of Form Validation
	Various Use case
	1. Form validation using jQuery
	2. Number validation in JavaScript
	3. Password Validation Form Using JavaScript
	4. How to validate confirm password using JavaScript ?
	5. JavaScript Program to Validate Password using Regular Expressions

	What is jQuery
	jQuery Features
	Why jQuery is required
	How to add jQuery to HTML Page?
	1. Using jQuery from CDN Link
	2. Download the jQuery Files Locally and use them

	Basic Syntax for jQuery Function

	jQuery Selectors
	All jQuery selectors start with a dollor sign and parenthesis e.g. $(). It is known as the factory function.
	The $() factory function
	How to use Selectors
	The jQuery selectors can be used single or with the combination of other selectors. They are required at every steps while using jQuery. They are used to select the exact element that you want from your HTML document.

	jQuery Events
	Mouse Events
	Keyboard Events
	Form Events
	Document/Window Events
	Syntax for event methods
	Steps in an AJAX Request
	Example: AJAX with JSON
	Using Vanilla JavaScript
	Using Fetch API (Modern Approach)

	Using POST with AJAX
	Vanilla JavaScript
	Fetch API

	Key Components of AJAX
	Structure of JSON
	Syntax Rules
	Example JSON
	Use Cases
	JSON vs. Other Formats
	b. History
	c. Why Angular?
	d. Here are some of the features of Angular
	1. Custom Components
	2. Data Binding
	3. Dependency Injection
	4. Testing
	5. Comprehensive
	6. Browser Compatibility

	e. Advantages of Angular
	f. Disadvantages of Angular
	g. Angular Prerequisites
	NodeJS
	Node --version npm --v
	npm install -g @angular/cli
	ng--version

	Creating an Angular Application
	Root HTML - index.html(default code)
	Defination:-
	An Angular component has several parts, such as:
	Template
	TemplateUrl
	Styles
	styleUrls

	Creating a Component in Angular 8:
	Note:-write below picture four files in exam important to explaining component
	Using a component in Angular 8:
	gfg.component.html:
	gfg.component.css:

	Data Binding
	One-way databinding
	Two-way databinding
	One way Data Binding:-

	1. String Interpolation
	For example:
	Output:
	Example:
	app.component.html:

	2. Property Binding in Angular 8
	For example:

	Event Binding in Angular 8
	For example:
	Event Binding Example
	app.component.html:
	Output:

	4. Class Binding
	Syntax:
	app.component.html
	app.component.ts
	Output:
	Syntax:

	b. Two way Data Binding using ngmodel
	Syntax:
	Note:-when you are using ngmodel import FormsModule
	[ngModel] + (ngModelChange) = [(ngModel)]
	[text] + (textChange) = [(text)]
	app.component.ts file:
	app.component.html file:
	Output:

	(OR)
	Without using ngmodel
	app.component.html
	app.component.ts

	Angular Directives
	Angular 8 directives can be classified in 3 categories based on how they behave:
	What is the Need for Angular Services?
	 Services avoid rewriting of code. A service can be written once and injected into all the components that use that service

	What Are Angular Services?
	Features of Angular Services
	Creating Angular Project Use below Commands
	1) about.component.html:-
	About.component.ts:-
	2) contact.component.html:-
	3) header.component.css:-
	4) header.component.html:-
	6) notfound.component.html:-
	7) app.component.html:-
	8) app.module.ts:-

	Test.service.ts:-
	8. import {

	7. Http Module:-
	Defination:-

	Example2:-
	Example 3:-
	Creating Angular Project Use below Commands
	Step6:Profile.component.css
	Step7:Profile.component.html
	Step8:Profile.component.ts

	Introduction:-
	2. why learn ReactJS?
	3.React.JS History
	4. Features of React
	 JSX

	Virtual Document Object Model (DOM)
	 Architecture
	 Extensions
	 Data Binding
	 Debugging
	 Components in React
	 Single-Page Applications (SPAs)

	Install React JS
	How To Install React on Windows

	React create-react-app
	React Components
	1. What are React Components?
	 Functional Component
	Syntax:

	 Class Component
	Syntax:

	Functional Component vs Class Component
	Rendering React Components
	const elementName = <ComponentName/>;
	Explanation:

	Components in Components
	Example:

	React State:-
	a. What Is ‘State’ in ReactJS?
	b. Creating State Object
	Output:-
	Example:

	What is a Hook?
	Example:

	Hook Rules
	Defination:-
	Syntax:
	Syntax:
	Example:-

	React Forms
	a. Defination:-
	Controlled Components

	b. Creating Form:-
	1. Uncontrolled component
	Example
	Output

	Controlled Component
	Example

	Output:-
	(or) controlled form
	Example:-

	Multiple Input Fields:-
	Output:-
	Select:-

	Component Life-Cycle:-
	 Constructor:-
	Method to initialize state and bind methods. Executed before the component is mounted.

	Output:-
	Example:-

	 Render
	Example:-

	Output:-
	 componentDidMount
	Output:- My Favorite Color is yellow
	 getDerivedStateFromProps:-
	Example:-
	Output:-
	Example:-
	Output:-
	 getSnapshotBeforeUpdate:-
	Example:-

	Output:-
	Example:-
	 componentWillUnmount
	Output:-

	React Redux:-
	c. Why Redux?
	d. Defination:-
	e. Redux Architecture
	f. Redux Installation
	Example Code For Redux Store:-

	g. Example Code:-Creating store and components Accessing data from store
	 Index.js
	 App.js
	 Store.js
	 Hooks

	 Account.js
	 Form.js
	What is a React Router?
	Steps to Use React Router
	npx create-react-app Reactrouterprogram
	Folder Structure:

	Implementing React Router
	Example:-
	 index.js:
	Pages / Components
	 Layout.js:
	 Home.js:
	 Blogs.js:
	 Contact.js:
	 NoPage.js:
	Angular vs React JS:-
	What is React?
	What is Angular?

	Q) Differentiate React and Node
	Q) What is package.json file? How to create it?
	npm init eg.
	Q) Explain about censorify module in node.js
	Output:
	Q) Explain how to create modules in node.js with an example.
	Eg.
	demo.js:
	Output:
	Q) Explain how to write data to console in Node.js
	Q) Explain Event Handling mechanism in Node.js
	Q) Explain how to schedule/add work to Event Queue using Timers.
	i. Delaying Work with Timeouts
	setTimeout(myFunc, 1000);
	Eg. Implementing a series of timeouts at various intervals
	Output:
	ii. Performing Periodic Work with Intervals
	Eg. Timer2.js
	Output:
	iii. Performing Immediate Work with an Immediate Timer
	iv. Using nextTick to Schedule Work
	Eg. Timer3.js
	Output:
	v. Dereferencing Timers from the Event Loop
	Eg.
	Q) Explain how to create a custom event in Node.js
	Adding Event Listeners to Objects
	Removing Listeners from Objects:
	Eg. 1:
	Eg. 2. Event1.js
	Output:
	Q) What is a callback? Explain different types of callbacks with suitable examples.
	Callback with parameters:
	Output:
	Q) Explain Buffer class in Node.js with an example.
	Q) What are streams? Explain different types of streams with suitable examples.
	Eg. Read Stream
	Eg. Write Stream
	Eg. Duplex Stream:
	Q) Write a program in Node.js to count no.of lines, words and characters in a given file.
	Q) Write a program in Node.js to count no.of vowels, consonants, digits and special characters in a given file.
	Q) Explain about Node File I/O with suitable examples.
	Eg. Asynchronous read and write:
	Eg. Synchronous Read and Write
	Q) Write a program in Node.js to access file system
	b. To list files/directories in a given directory:
	C. To create a directory:
	D. Listing Files:
	F. Truncating Files:
	G. Making and Removing Directories:
	H. Delete Directories:
	I. Renaming Files and Directories:
	J. Watching for File Changes:
	Q) Explain Events and Methods available on HTTP ClientRequest and ServerResponse objects.
	The http.ServerResponse Object :
	Q) Implement HTTP Services in Node.js to read user name from user and greet the user as the response.
	index.js
	O/P:
	Database:-
	NoSQL:-
	1. Document-Based Database:
	2. Key-Value Stores:
	3.Column Oriented Databases:
	4. Graph-Based databases:

	What is MongoDB?
	Why Use MongoDB?
	Features of MongoDB –
	Advantages of MongoDB :
	Disadvantages of MongoDB :
	How MongoDB works ?
	MongoDB work in two layers –
	 Application Layer and

	Getting Started
	Database, Collection and Documents:-
	Database
	Collection
	Document:-
	Consider the below example that shows a sample database stored in both Relational and Document Database
	How mongoDB is different from RDBMS ?

	Install MongoDB
	 There are 3 ways to install and use MongoDB
	1. Let’s install MongoDB on our machines(Windows)
	Install MongoDB on Windows using MSI Requirements to Install MongoDB on Windows
	mongod
	mongod
	Run mongo Shell
	2. MongoDB – Visual Studio Extension
	Fig.1. MongoDB – Visual Studio Extension
	Definition:-
	Advantages Of Data Modelling
	Different Types of Data Models
	1. Conceptual data model
	2. Logical data model
	3. Physical data model

	Data Model Design (or) Types
	1. Embedded Data Model
	2. Normalized Data Model (or) Reference Data Model:
	Considerations while designing Schema in MongoDB
	Example

	Connect MongoDB:-
	CURD Operation:-
	Creating and drop database:-
	Ex:-
	Update:-
	Read:-
	Delete:-
	MongoDB Query Operators
	Syntax:
	Example:

	Types of Query Operators in MongoDB
	1. Comparison Operators

	Documents:
	1. $eq
	2. $gt
	3. $gte
	4. $in
	5. $lt
	6. $lte
	7. $ne
	8. $nin
	Logical Operators
	db.books.createIndex({bio:"text"})
	MongoDB Element Operator

	Bitwise Operators
	Geospatial Operators
	Comment Operators
	Examples:

	Projection Operators
	MongoDB Projection Operator

	Aggregation Pipeline
	a. What is Aggregation in MongoDB?
	b. MongoDB aggregate pipeline syntax
	c. Single-purpose aggregation
	d. How to use MongoDB to Aggregate Data?
	e. Mongodb Aggregation Pipeline
	Example:
	f. Aggregation Pipeline Method
	g. How Fast is MongoDB Aggregation?

	Steps to Setup the Project
	Project Structure:

	NodeJS and MongoDB Connection
	Create a Collection in MongoDb using Node Js
	Insert a Single Document
	Insert Many Documents
	Handling Insertion Results
	Read Documents from the collection
	Closing the Connection

	Types of mongoose validation:
	1. Built-in validators:
	2. Custom validators
	Steps to create node application And Installing Mongoose:

